欢迎来到咨信网! | 加入共赢加入共赢 咨信网一键收藏:Ctrl+D | 自信网络旗下运营:咨信网 自信AI创作助手 自信AI导航
咨信网
全部分类
  • 包罗万象   教育专区 >
  • 品牌综合   考试专区 >
  • 管理财经   行业资料 >
  • 环境建筑   通信科技 >
  • 法律文献   文学艺术 >
  • 学术论文   百科休闲 >
  • 应用文书   研究报告 >
  • ImageVerifierCode 换一换
    首页 咨信网 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    考查“四翼”淡化技巧——2023年高考新课标Ⅰ卷第20题的解法探究与备考探索.pdf

    • 资源ID:3123726       资源大小:488.51KB        全文页数:4页
    • 资源格式: PDF        下载积分:10金币
    微信登录下载
    验证码下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    验证码: 获取验证码
    温馨提示:
    支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    开通VIP
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    声明    |    会员权益      获赠5币      写作写作
    1、填表:    下载求助     索取发票    退款申请
    2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
    6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    7、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

    考查“四翼”淡化技巧——2023年高考新课标Ⅰ卷第20题的解法探究与备考探索.pdf

    2023 年第 9 期(上)中学数学研究3考查“四翼”淡化技巧 2023 年高考新课标 I 卷第 20 题的解法探究与备考探索广东佛山南海中学(528211)陈晓琳谭琼珍周鸿高摘要 本文对 2023 年高考新课标 I 卷第 20 题的解法进行了探究,并以此对高考备考进行有益的探索,抛砖引玉,希冀更多模块的探究、更大范围的探索,从而更好的指导高考备考.关键词 四翼;基础性;综合性;思想方法2023 年高考新课标 I 卷第 20 题是一道数列解答题,这是近年来首次把数列题放置后三题的位置,体现了数列解答题难度加大的趋势.然而,细观此题,该题主要考查等差数列的定义、通项公式与前 n 项和公式,只是一道常规题;而且没有涉及等差数列的推断,从思维程度上看,处于中档题位置.确实,2023 年高考数学试题严格落实 中国高考评价体系 中“一核”“四层”“四翼”的考查要求,合理控制试题难度;在“反套路、反刷题、反死记硬背”上进行命题示范,科学引导中学教学,是新高考命题的风向标,值得广大一线教师深入钻研、深刻领会.通过命题创新,创设新颖的试题情境、新颖的题目条件、新颖的设问方式,考查考生学生思维的灵活性与创造性.2023 年高考的天津卷第 14 题,虽是“爪形”三角形问题,却没有设问解三角形,而是将问题设置为求向量数量积的最大值,需要考生借助向量来“翻译”题中的各个“爪形”三角形,最终将问题转化为函数的最大值问题,有效考查学生思维的灵活性与创新性.例 5(天津卷第 14 题)在ABC 中,A=60,BC=1,点 D 为 AB 的中点,点 E为 CD 的中点,若设 AB=a,AC=b,则 AE 可用 a,b 表示为;若 BF=13 BC,则 AE AF 的最大值为.图 6解析如图 6 所示,由题知 AE=12 AD+12 AC=14 AB+12 AC=14a+12b.设|a|=p,|b|=q,则在 ABC 中,由余弦定理,得AB2+AC2BC2=2ABAC cosA,即 p2+q2=1+pq.由 p2+q2 2pq,得 pq 6 1(当且仅当 p=q=1 时取等号).由 BF=13 BC,得 AF=23 AB+13 AC=23a+13b,则 AE AF=(14a+12b)(23a+13b)=112(2p2+52pq+2q2)=112(2+92pq).于是当 p=q=1 时 AE AF 取最大值,为1324.评注该题中共蕴含了三个“爪形”三角形,但题目并未设问求相关长度问题,而是以一个不定三角形为背景,以向量的形式来考查学生对三角形、向量、不等式、函数等知识,属于一道创新性试题,能够有效考查学生的思维的灵活性与创新性.3 高考备考高考试题是命题者在 课程标准 和 中国高考评价体系 的指导下,经过反复酝酿、打磨、斟酌而成,对高考的备考具有导向性与启示性3.因此,作为一线教师,应该善于从“四层”“四翼”的角度对高考真题予以分类整理,归纳总结出一类试题的通性通法,使得学生跳出“题海”,高效备考.2023 年高考一共有九套试卷(全国甲、乙卷的文、理卷,新高考的 I、卷,北京卷、上海卷和天津卷),笔者梳理解三角形问题,发现共有 7 道试题以“爪形”三角形为背景考查解三角形知识,而通过深入分析这 7 道试题,基于“四翼”的角度可以将其归纳为三类,基础性试题、综合性试题、创新性试题,文中分别选取典型试题予以分析,以帮助读者掌握三类试题的解法,提高数学核心素养和解题能力.参考文献1 中华人民共和国教育部.普通高中数学课程标准(2017 年版 2020年修订)M.北京:人民教育出版社,2020.2 教育部考试中心.中国高考评价体系 M.北京:人民教育出版社,2019.3 刘海涛,万胜.探析高考真题,明晰备考方向对 2023 年全国乙卷数学试题的评析 J.高中数理化,2023(13):7-10.4中学数学研究2023 年第 9 期(上)1.试题评析高考真题(2023 年高考新课标 I 卷第 20 题)设等差数列an 的公差为 d,且 d 1.令 bn=n2+nan,记 Sn,Tn分别为数列 an,bn 的前 n 项和.(1)若 3a2=3a1+a3,S3+T3=21,求 an 的通项公式;(2)若 bn 为等差数列,且 S99 T99=99,求 d.本题涉及考点主要有:等差数列的定义、性质,通项公式的形式及其应用,前 n 项和公式的性质及其应用.主要考查运算求解能力、推理论证能力、转换化归能力,蕴含函数与方程、转换与化归、特殊与一般、分类讨论等思想方法.本题是基础性与综合性的有机结合体.中国高考评价体系 指出基础性包括学科内容的基本性、通用性及情境的典型性.综合性要求以多项相互关系的活动组成的复杂情境作为载体,能够反映学科知识、能力内部的整合及其综合运用.本题的基础性体现在考查等差数列的定义、通项公式与前 n 项和公式,这些是数列中的基本概念和基本公式.本题的综合性体现在条件中 bn与 an的相互关联,如何通过 bn的信息转化为 an的基本量运算,在问题解决过程中需要用到函数与方程的思想,转化与分类讨论思想,需要有较强推理论证能力和运算求解能力,对学生的思维品质和核心素养要求较高.本题也体现了高考数学在“反套路,反机械刷题”上所下的功夫,突出强调对基础知识和基本概念的深入理解和灵活运用,注重考查学科知识的综合应用能力.学生在平时的复习中可能做到更多的数列题型是简单的基本量运算,由递推关系求通项公式,由 Sn与 an的关系求通项公式,各种数列求和方法等.而本题的创新点是给了两个有关联的等差数列,这样使题目看似很基础但实际综合性很强.这是真正考查学生对基础知识和基本概念的深入理解和灵活运用的能力,真正检验学生对数学学习是否融会贯通和真懂会用,达到高考为国家为高校选拔人才的目的.2.解法探究2.1 第(1)问解法探究第(1)问比较常规,利用等差数列基本性质与基本公式就可求解.主要是把两个条件转化为用等差数列 an 的基本量 a1,d 表示,特别是第二个条件中的 T3,要利用 bn与 an的关系进行代入,再利用函数与方程的思想,建立方程组求出 a1与 d 的值.在解题过程中,难点在于消元以及在消元后解出分式方程 6d+9d=21.考生的主要问题在于解方程过程出错,或者在回答 d 的取值时没有写出依据 d 1 对根进行取舍,解题过程不够严谨;可能也有考生在回答通项公式时写成 an=3n 或者 3n 的形式,这是对数列和对数列通项的符号表示不理解造成的.解答过程如下:解析(1)因为 3a2=3a1+a3,所以 3d=a1+2d,解得 a1=d,所以 S3=3a2=3(a1+d)=6d,又 T3=b1+b2+b3=2d+62d+123d=9d,所以S3+T3=6d+9d=21,即 2d2 7d+3=0,解得 d=3 或 d=12(因为 d 1,舍去),所以 an=a1+(n 1)d=3n.2.2 第(2)问解法探究解答第(2)问关键是对 bn 为等差数列的翻译,以及S99 T99=99 的处理.首先,对 bn 为等差数列的翻译有如下几种方法:1由 bn 为等差数列,得 b1,b2,b3成等差数列,从而 2b2=b1+b3,则 2 6a2=2a1+12a3,即6a1+d=1a1+6a1+2d,整理得 a21 3a1d+2d2=0,解得 a1=d 或a1=2d.这种解法体现了由一般到特殊的思想方法,是比较常规的思路.2由 bn 为等差数列,得 2bn=bn+1+bn1,则2 (n(n+1)an)=(n+1)(n+2)an+1+(n 1)nan1,即2 (n(n+1)an)=(n+1)(n+2)an+d+(n 1)nan d,整理得 a2n(2n+1)and+n(n+1)d2=0,解得 an=nd或 an=(n+1)d.这种解法是基于等差数列定义的一般性思路,需要有很明确的目标和较强的运算处理能力.3由 bn 为等差数列,得 bn+1 bn为常数,即bn+1 bn=(n+1)2+(n+1)an+1n2+nan=(n+1)2+(n+1)a1+ndn2+na1+(n 1)d=dn2+(2a1 d)n+2(a1 d)dn2+(2a1 d)n+2(a1 d)d+(a21 3a1d+2d2),要使 bn+1bn为常数,则 a213a1d+2d2=0,解得 a1=d或 a1=2d.这种解法也是基于等差数列定义的一般性思路,但是需要有超级强大的运算处理能力,以及对等差数列定义有本质上的理解和对式子结构的清晰认识.4由已知 bn=n2+nan=n(n+1)an,因为数列 an,bn都是等差数列,所以它们的通项公式都是f(n)=kn+b的形式,则分母 an=a1+(n 1)d=dn+(a1 d)是分子的因式,只能 a1 d=0 或da1 d=1,所以 a1=d 或2023 年第 9 期(上)中学数学研究5a1=2d.这种解法是由等差数列的通项公式的一次函数特征分析得到的,可以避免复杂的运算过程,从而是最快的解法.5由已知 bn=n2+nan,得 anbn=n2+n,因为数列an,bn 都是等差数列,所以设 an=dn+k,bn=d0n+t,则(dn+k)(d0n+t)=n2+n,即 dd0n2+(dt+d0k)n+kt=n2+n,此式对所有 n N都成立,所以dd0=1,dt+d0k=1,kt=0,若 k=0,则 an=dn(即 a1=d),bn=n+1d;若 t=0,则an=d(n+1)(即 a1=2d),bn=nd.这种解法其实也是由等差数列的通项公式的一次函数特征推理得到,运算量也比较少,解题过程应用了恒成立问题的解决思想方法.纵观以上几种方法,都需要综合所学多种知识求解,可以取前三项,特殊探路,体现特殊到一般的解题思路;可以常规运算化简,这样涉及相关字母符号较多,需要强大的运算求解能力;也可以从函数视角看待等差数列通项,利用一次函数式的结构特征,这样解答比较简单,但需要具备较强的数学思维能力.其次,对 S99 T99=99 的处理有如下几种方法:1若 a1=d,则 an=nd,bn=n+1d,S99 T99=99(d+99d)299(2d+100d)2=99,整理得 50d 51d=1,即(50d 51)(d+1)=0,解得 d=5150或 d=1.因为d 1,所以 d=5150;若 a1=2d,则 an=(n+1)d,bn=nd,S99 T99=99(2d+100d)299(1d+99d)2=99,整理得51d 50d=1,即(51d+50)(d 1)=0,解得 d=5051或d=1.因为 d 1,所以两个都不合题意.综上,d=5150.这种解法是在得到了 an与 bn的通项公式之后直接代入等差数列前 n 项和公式中进行计算,是非常自然的一种想法,属于常规做法.2因 为 数 列 an,bn 都 是 等 差 数 列,所 以 由S99T99=99,得99a5099b50=99,则a5050 51a50=1,即(a50 51)(a50+50)=0,解得 a50=51 或 a50=50.若 a1=d,则 an=nd,由 a50=51,得 50d=51,解得d=5150(符合 d 1);由 a50=50,得 50d=50,解得d=1(不符合 d 1,舍去);若 a1=2d,则 an=(n+1)d,由 a50=51,得 51d=51,解得 d=1(不符合 d 1,舍去);由 a50=50,得 51d=50,解得 d=5051(不符合 d 1,舍去).综上,d=5150.这种解法是根据等差数列的前 n 项和公式和等差中项的性质把 S99 T99=99 转化为 a50的值,这样做使得运算量减少,是比较快的解法.3若 a1=d,则 an=nd,bn=n+1d,得 an bn=(d1d)n1d,所以数列 an bn 是以首项为 d2d,公差为d1d的等差数列,可得其前99项和为99(d1d)501d=99,整理得 50d 51d=1,即(50d 51)(d+1)=0,解得d=5150或 d=1.因为 d 1,所以 d=5150;若 a1=2d,则 an=(n+1)d,bn=nd,得 an bn=(d 1d)n+d,所以数列 an bn 是以首项为 2d 1d,公差为 d 1d的等差数列,可得其前 99 项和为 99(d 1d)50+d=99,整理得51d 50d=1,即(51d+50)(d 1)=0,解得 d=5051或d=1.因为 d 1,所以两个都不合题意.综上,d=5150.这种解法构造新的等差数列 an bn,并利用等差数列前 n 项和公式和等差中项性质,既简化了后面的运算过程,也减少分类讨论的次数,体现较强的数学思维能力.通过解法探究,可以说明这是一道结构简洁、解法常规、价值深刻的经典好题.对比往年,它没有用 Sn与 an关系来包装,也没有用累加叠乘、构造等方法求通项,更不需要用裂项相消或错位相减这些方法求和,体现了“淡化技巧”的特点.它重点考查了等差数列的基本概念、基本公式、基本性质、基本运算,却呈现出“无价值,不入题;无思维,不命题;无情境,不成题”的典型特征,体现出“基础性、综合性、应用性、创新性”的“四翼”考查要求.考生做答此题,需要对等差数列通项和求和表达式的结构非常熟悉,需要分类讨论和逻辑推理,需要有面对含多字母式子变形化简不畏惧不慌乱的心理素质,又有克服困难的决心、信心和能力.3.备考探索2023 年高考新课标 I 卷数列解答题,是一道出乎意料又在情理之中的试题,出乎意料表现在试题放置在后三题的位置,而没有考查递推数列和复杂数列的求和,没有考查与不等式的交汇;情理之中体现在此题落实了 中国高考评价体系 中“一核”“四层”“四翼”的考查要求.高考评价体系明确了高考的核心功能、考查内容和考查要求,是新时代高考命题、评价与改革的理论基础和实践指南,是用于指导全国及各省高考内容改革和命题工作的核心文件,高考备考理应6中学数学研究2023 年第 9 期(上)深入研读高考评价体系,用高考评价体系指导高考备考.然而现状是很多老师备考过程总是惯性前行,按以往经验对高考数学内容进行难中易等级划分,集中精力花在自认为容易的专题上;高考备考过程对各专题按题型划分,进行大量的刷题训练,抱着总有一种题型会考到的想法,做了大量的无用功.这其中有对高考试题是否真正落实高考评价体系持怀疑的考量,也有对高考试题如何落实和体现高考评价体系的茫然.是以,高考试题的风格变化,才是广大一线教师高考备考的风向标.令人欣喜的是,近几年的高考试题确实呈现出新的风格、新的特征,值得老师们结合高考试题进行备考探索.3.1 用“课程标准”指导教学与备考高中数学课程标准关于“数列”的表述,有如下几点:(1)数列是一类特殊的函数,是数学重要的研究对象,是研究其他类型函数的基本工具,在日常生活中也有着广泛的应用.本单元的学习,可以帮助学生通过对日常生活中实际问题的分析,了解数列的概念;(2)探索并掌握等差数列和等比数列的变化规律,建立通项公式和前 n 项和公式;(3)能运用等差数列、等比数列解决简单的实际问题和数学问题,感受数学模型的现实意义与应用;(4)了解等差数列与一元一次函数,等比数列与指数函数的联系,感受数列与函数的共性与差异,体会数学的整体性.对照上面考题,考题与上述表述几乎完全契合.比较“课程标准”与“高考评价体系”,“高考评价体系”是一份指导性文件,理论性很强;而“课程标准”对学科在高中所学内容进行了规定,并明确了学习要求.比较“课程标准”与“高中数学教材”,“高中数学教材”版本众多,虽说内容都按“课程标准”编写,但有些细节上的不同;“课程标准”全国单一份,是编写教材的依据.所以,无论是在学习新课阶段还是在高考备考阶段,都应用“课程标准”指导工作.3.2 扎实抓好“四基”,发展“四能”“四基”是指数学基础知识、基本技能、基本思想、基本活动经验.在高三的一轮复习中应该要切实抓好“四基”,要摒弃帮学生“过”一下知识点,然后让学生大量做题巩固的做法.学生没有真正理解所学基础知识,没有掌握基本技能和基本思想,做再多的题也是徒劳,这只会增加学生负担,降低学习效率.如上述考题,考生如果按课标要求掌握相关知识方法,并不需要练太多的题,也没必要;反之,学习再多的技巧秘诀,也无用武之地.教师应该利用一轮复习的机会帮助学生深刻理解基础知识,训练好基本技能,掌握好基本思想,积累好基本活动经验,必要时螺旋上升地安排教学内容,让重要的数学知识和思想方法得到反复理解的机会.只有扎实抓好“四基”才能保证数学的学习质量,进一步发展“四能”(发现和提出问题的能力、分析和解决问题的能力、创新能力、实践能力).3.3 让学生掌握一定的数学思想方法数学思想方法,就是指现实世界的空间形式和数量关系反映到人的意识中,经过思维活动而产生的结果,它是对数学事实与数学理论(概念、定理、公式、法则等)的本质认识.数学思想方法是解决数学问题的重要途径.一般高中数学的数学思想和方法可分为三大类:第一类:数学思想方法,主要包括函数与方程的思想、数形结合的思想、分类与整合的思想、转换与化归的思想、特殊与一般的思想、有限与无限的思想、或然与必然的思想、算法的思想.第二类:数学思维方法,主要包括分析法、综合法、归纳法、演绎法、观察法、实验法、特殊方法等.第三类:数学方法,主要指应用面比较窄的具体方法,如配方法、换元法、消元法、待定系数法等具体的解题方法.考生掌握一定的数学思想方法才能在解题中快速地寻找解题的途径,顺利解决问题.比如上述考题,如果考生能用一般到特殊的思想方法来思考问题就能找到解决问题的突破口,能用函数与方程的思想方法来处理问题就能得到解决问题的快捷方法.3.4 提升数学思维和解决问题的能力随着新课程的改革,中国高考评价体系的落实,新高考的命题转向发展学生核心素养的问题,考查不但体现基础性,也体现综合性、应用性和创新性.综合性要求学生能在复杂问题情境中能够触类旁通、举一反三,甚至融会贯通.应用性要求学生能够主动灵活地将所学知识迁移到社会生活实践问题中.创新性要求学生具有发散思维、逆向思维、批判性思维等思维品质,在新颖或陌生的情境中主动思考,发现新问题、找到新规律、得出新结论.这可以从上面对今年数列考题的试题评析与解法探究中得到佐证.提高学生的思维水平的同时也意味着对教师提出更高的要求,教师应该引导学生掌握抽象数学对象、发现和提出数学问题的方法,以实现从“知其然”到“知其所以然”再到“何由以知其所以然”的跨越.参考文献1 教育部教育考试院.深入考查基础知识和能力,助力人才选拔和“双减”落地2023 年高考数学全国卷试题评价 J.中国考试,2023(7):15-21.2 教育部考试中心.中国高考评价体系 M.北京:人民教育出版社,2019.3 中华人民共和国教育部.普通高中数学课程标准(2017 年版 2020年修订)M.北京:人民教育出版社,2020.

    注意事项

    本文(考查“四翼”淡化技巧——2023年高考新课标Ⅰ卷第20题的解法探究与备考探索.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表




    页脚通栏广告
    关于我们 - 网站声明 - 诚招英才 - 文档分销 - 便捷服务 - 联系我们 - 成长足迹

    Copyright ©2010-2024   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:4008-655-100    投诉/维权电话:4009-655-100   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :gzh.png  weibo.png  LOFTER.png               

    自信网络  |  ZixinNetwork