三角形中位线说课稿.doc
《三角形中位线说课稿.doc》由会员分享,可在线阅读,更多相关《三角形中位线说课稿.doc(4页珍藏版)》请在咨信网上搜索。
《三角形的中位线》说课稿 胶州十八中 刘群 各位评委大家好。我是 号选手。我说课的题目是《三角形的中位线》。 下面我将从教材分析、教法、学法分析、教学过程设计、及教学评价四个方面来剖析这节课。 教材分析 1、 分析本节内容在教材中的地位、特点和作用。 本节选自北京师范大学出版社出版的八年级数学下册第四章第三节,是课本150页到151页的内容。与传统教材相比,新教材对有关内容采用了边探索边证明这种“合二为一”的处理方式,更注重让学生经历“探索-猜测-验证”的过程, 三角形中位线是三角形中重要的线段,三角形中位线定理是一个重要性质定理,它是前面已学过的平行线、全等三角形、平行四边形等知识内容的应用和深化,对进一步学习非常有用,尤其是在判定两直线平行和论证线段倍分关系时常常用到。在三角形中位线定理的证明及应用中,处处渗透了化归思想,它是一种重要的思想方法,无论在今后的学习还是在科学研究中都有着重要的作用,它对拓展学生的思维有着积极的意义。 2、 分析学情 学生前面应经学过平行线、全等三角形、平行四边形等知识内容,这为顺利完成本节课打下了基础。但是,从本班学生的认知结构和心理特征来讲,演绎推理能力还比较薄弱。因此,本节课应立足学生的生活经验和已有的数学活动经验,创设恰当的问题情境,注重“探索-猜测-验证”过程的完整。 3、 分析教学目标 根据以上分析,为了培养学生的数学素养和终身学习能力,我确立了如下的三维目标: (一) 知识与技能目标 (1)理解三角形中位线的定义; (2)掌握三角形中位线定理; 3、应用中位线定理解决简单问题 (二)过程与方法目标 1、经历探索三角形中位线定理的过程,发展合情推理能力 2、证明三角形中位线定理,发展演绎推理能力 (三)情感态度与价值观目标 1、培养学生实事求是、善于观察、勇于探索、严密细致的科学态度; 2、在探索过程中,体验成功的喜悦,树立学习的信心。 3、 重点与难点 重点:通过经历“探索-猜测-验证”的过程,理解并应用三角形中位线定理,体会合情推理与演绎推理在获得结论的过程中发挥的作用 难点:合情推理能力、演绎推理能力的发展;归纳、类比、转化等数学思想方法的渗透。 教法分析 本节课,我将采用启发式、讨论式相结合的教学方法,以问题的提出、问题的解决为主线,营造民主和谐的课堂氛围,激励学生积极参与教学实践活动,鼓励学生独立思考、相互交流,把“倡导自主、体现合作、引导探究、重视过程”真正落实到课堂中。 另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好的激发学生的学习兴趣,提高学习效率。 德国教育家第斯多惠告诉我们,教学的本质不在于传授本领,而在于激励唤醒和鼓舞。所以,教学设计 (一) 设置情景,导入新课 用多媒体动画显示一口美丽的池塘,在池塘的边上有两点B、C然后字幕显示:如何求池塘B、C两点间的距离? 这样设计意在找准学生思维的基点,利用求池塘的宽设疑,激发学生的学习兴趣和刺激他们的求知欲,放飞学生的思维,让他们去思考,去探索,为后面的学习做铺垫。 (二)自主探究,获得新知 大家能将这个三角形分为四个全等的三角形吗? (1)根据同学们对这个问题的解决,我们提出了三角形中位线定义:连接三角形两边的中点的线段就叫做三角形的中位线。 (2)三角形中位线定理 ① 如图,△ABC中,点D、E分别是AB与AC的中点,那么DE与BC之间存在什么样的数量关系呢 ② 学生提出猜想 猜想:三角形中位线平行于第三边且等于第三边的一半。 ③ 证明:△ABC中,点D、E分别是AB与AC的中点, ∴ . ∵ ∠A=∠A, ∴ △ADE∽△ABC(如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似), ∴ ∠ADE=∠ABC,(相似三角形的对应角相等,对应边成比例), ∴ DE∥BC且 ④思考:本题还有其它的解法吗? 证明:可延长DE到F,使EF=DE,连接CF △ABC中, E是AC的中点,CE=AE ∵∠CEF=∠AED EF=DE ∴△CEF∽△AED ∴CF=AD ∠ECF=∠A ∴ AD∥CF ∵点D是AB的中点 ∴AD=BD ∴CF=BD ∵AD∥CF 即BD∥CF ∴四边形BCFD为平行四边形 ∴DF=BC DF∥BC ∴DE∥BC,DE =BC (3)师生总结定理 三角形的中位线平行于第三边并且等于第三边的一半。 (三) 指导应用,鼓励创新 (1)例题讲解 例1 求证三角形的一条中位线与第三边上的中线互相平分。 已知: 如图所示,在△ABC中,AD=DB,BE=EC,AF=FC。 求证: AE、DF互相平分。 分析:由图形知道AE、DF是两条相交的线段,要证AE、DF互相平分,我们只需证明四边形ADEF为平行四边形即可。要证四边形ADEF为平行四边形,则要证明DE∥AC,EF∥AB。在由三角形中位线定理可以证明DE∥AC,EF∥AB。所以结论成立。 证明 连结DE、EF.因为AD=DB,BE=EC ∴ DE∥AC 同理EF∥AB ∴四边形ADEF是平行四边形 因此AE、DF互相平分。 例2 已知:在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点. 求证:四边形EFGH是平行四边形 分析:要证四边形EFGH是平行四边形,则要证明 思路一:连结AC,证:EF=HG , EF∥HG 思路二:连结BD,证:EH=FG , EH∥FG 思路三::连结AC、BD证: EF∥HG , EH∥FG 思路四:连结AC、BD证:EF=HG ,EH=FG 证明 连结AC、BD 在△ABC中,,E、F分别是AB、BC的中点. 所以 EF为△ABC的中位线 由中位线定理有:EF∥AC EF =AC 同理可证: HG∥AC HG=AC 所以 EF=HG , EF∥HG 故四边形EFGH是平行四边形 (2)变式训练 若上例中的四边形换成等腰梯形、平行四边形、菱形、矩形、正方形等特殊的四边形,那么所得到的四边形也会特殊吗? 从中可以总结出什么结论吗? (3) 学生练习 1.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,AE=EB, 求证:OE∥BC。 2.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点. 求证:四边形DEFG是平行四边形. (四) 小结概括,深化认识 (1)本节课基本内容为: 剪拼三角形 三角形中 位线定义 三角形中 位线定理 (2)从实验操作中发现添加辅助线的方法. (3)转化思想的应用——将三角形问题转化为平行四边形问题。 (五)布置作业 课本P94 1、2、3。 五、板书设计 三角形中位线 一、中位线定义 二、三角形中位线定理 三角形中位线定理证明 例1 例2 教学评价 本节课的第一个亮点就是本课的探究活动层层深入,环环紧扣,不仅凝炼了教学环节,更让学生亲历了知识的生成过程,有效突破了教学的重点和难点。比如:探究活动中,教师让学生用桌上三角形,剪刀,直尺剪拼三角形让同学们发现四个小三角形全等。不仅让同学知道了三角形中位线的作用,同时又让课堂气氛十分活跃,有利于同学们的学习。第二个亮点是老师让同学们自己猜想归纳定理,并用自己的方法证明自己的猜想,这体现了“学生为主体”的课堂要求,让同学们充分的参与课堂教学中来,与以往的“满堂灌”教学方法有着本质的不同。更有利于同学们学习。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 中位线说课稿
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文