2000新知杯历年上海市初中数学竞赛试卷及答案试题全与答案分开.doc
《2000新知杯历年上海市初中数学竞赛试卷及答案试题全与答案分开.doc》由会员分享,可在线阅读,更多相关《2000新知杯历年上海市初中数学竞赛试卷及答案试题全与答案分开.doc(77页珍藏版)》请在咨信网上搜索。
1、2013上海市初中数学竞赛(新知杯)(2013年12月8日 上午9:0011:00)题 号一(18)二总 分9101112得 分评 卷复 核一、 填空题(每题10分)1. 已知,则2. 已知,3. 已知在上且过点作的平行线交于,的延长线交的延长线于,则 4. 已知凸五边形的边长为为二次三项式;当或者时,当时,当时,则5. 已知一个三位数是35的倍数且各个数位上数字之和为15,则这个三位数为_.6. 已知关于的一元二次方程对于任意的实数都有实数根,则的取值范围是_.7. 已知四边形的面积为2013,为上一点,的重心分别为,那么的面积为_.8. 直角三角形斜边上的高,延长到使得,过作交于,交于,则
2、二、解答题(第9题、第10题15分,第11题、第12题20分)9.已知,四边形是正方形且边长为1,求的最大值.10. 已知是不为0的实数,求解方程组: 11. 已知:为整数且,求的最小值.12. 已知正整数满足求所有满足条件的的值.答案:1. 2.60 3. 4.0 5.735 6. 7. 8. 9. 10.经检验原方程组的解为:,.11.【解析】满足题设等式,下证当时,不存在满足等式要求的整数,不妨设,(1) 当时,当中有负整数时,必为,若不满足条件,当无解.不可能,当中无负整数时,显然,容易验证等式不可能成立.(2) 当时,当中有负整数时,必为显然等式不成立,当中无负整数时,同上容易验证等
3、式不可能成立.(3) 当时,均为正整数,同上易验证等式不可能成立.综上所述,的最小值为5.12.2013上海新知杯初中数学竞赛答案2012年(新知杯)上海市初中数学竞赛试卷(2012年12月9日 上午9:0011:00)题 号一(18)二总 分9101112得 分评 卷复 核解答本试卷可以使用科学计算器一、 填空题(每题10分,共80分)1. 已知的边上的高为,与边平行的两条直线将的面积三等分,则直线与之间的距离为_。2. 同时投掷两颗骰子,表示两颗骰子朝上一面的点数之和为的概率,则 的值为_。3. 在平面直角坐标系中,已知点(,),点在直线上,使得是等腰三角形,则点的坐标是_。4. 在矩形中
4、,。点分别在上,使得。是矩形内部的一点,若四边形的面积为,则四边形的面积等于_。5. 使得是素数的整数共有_个。6. 平面上一动点到长为的线段所在直线的距离为,当取到最小值时,_。7. 已知一个梯形的上底、高、下底恰好是三个连续的正整数,且这三个数使得多项式(是常数)的值也恰好是按同样顺序的三个连续正整数,则这个梯形的面积为_。8. 将所有除以余和除以余的正整数从小到大排成一列,设表示这数列的前项的和,则_。(这里表示不超过实数的最大整数。)二、 解答题(第9,10题,每题15分,第11,12题,每题20分,共70分)9. 如图,是正方形内一点,过点分别作的垂线,垂足分别为。已知,求证:或者,
5、或者。10. 解方程组。11. 给定正实数,对任意一个正整数,记,这里,表示不超过实数的最大整数。(1) 若,求的取值范围;(2) 求证:。12. 证明:在任意个互不相同的实数中,一定存在两个数,满足2011年(新知杯)上海市初中数学竞赛试卷(2011年12月4日 上午9:0011:00)题号一(18)二总分9101112得分评卷复核解答本试卷可以使用科学计算器一、 填空题(每题分,共分)1. 已知关于的两个方程:,其中。若方程中有一个根是方程的某个根的倍,则实数的值是_。2. 已知梯形中,/,则梯形的面积为_。3. 从编号分别为,的张卡片中任意抽取张,则抽出卡片的编号都大于等于的概率为_。4
6、. 将个数,排列为,使得的值最小,则这个最小值为_。5. 已知正方形的边长为,分别是边,上的点,使得,线段与相交于点,则四边形的面积为_。6. 在等腰直角三角形中,是内一点,使得,则边的长为_。7. 有名象棋选手进行单循环赛(即每两名选手比赛一场),规定获胜得分,平局得分,负得分。比赛结束后,发现每名选手的得分各不相同,且第名的得分是最后五名选手的得分和的,则第名选手的得分是_。8. 已知,都是质数(质数即素数,允许,有相同的情况),且是个连续正整数的和,则的最小值为_。二、 解答题(第,题,每题分,第,题,每题分,共分)9. 如图,矩形的对角线交点为,已知,角的平分线与边交于点,直线与相交于
7、点,直线与相交于点M。求证:。解10. 对于正整数,记。求所有的正整数组,使得,且。解11. (1)证明:存在整数,满足;(2)问:是否存在整数,满足证明你的结论。解12. 对每一个大于的整数,设它的所有不同的质因数为,对于每个,存在正整数,使得,记例如,。(1)试找出一个正整数,使得;(2)证明:存在无穷多个正整数,使得。解2010年(新知杯)上海市初中数学竞赛试卷一、填空题(第15小题,每题8分,第610小题,每题10分,共90分)1. 已知,则_。2. 满足方程的所有实数对为_。3. 已知直角三角形ABC中,CD为的角平分线,则_。4. 若前2011个正整数的乘积能被整除,则正整数的最大
8、值为_。5. 如图,平面直角坐标系内,正三角形ABC的顶点B,C的坐标分别为(1,0),(3,0),过坐标原点O的一条直线分别与边AB,AC交于点M,N,若OM=MN,则点M的坐标为_。6. 如图,矩形ABCD中,AB=5,BC=8,点E,F,G,H分别在边AB,BC,CD,DA上,使得AE=2,BF=5,DG=3,AH=3,点O在线段HF上,使得四边形AEOH的面积为9,则四边形OFCG的面积是_。7. 整数满足,且关于的一元二次方程的两个根均为正整数,则_。8. 已知实数满足且。设是方程的两个实数根,则平面直线坐标系内两点之间的距离的最大值为_。9. 如图,设ABCDE是正五边形,五角星A
9、CEBD(阴影部分)的面积为1,设AC与BE的交点为P,BD与CE的交点为Q,则四边形APQD的面积等于_。10. 设是整数,且能被9整除,则的最小值是_,最大值是_。二、 解答题(每题15分,共60分)11. 已知面积为4的的边长分别为,AD是的角平分线,点是点C关于直线AD的对称点,若与相似,求的周长的最小值。12. 将1,2,9这9个数字分别填入图1中的9个小方格中,使得7个三位数和都能被11整除,求三位数的最大值13. 设实数满足,且,求的最大值和最小值14. 称具有形式的数为“好数”,其中都是整数(1)证明:100,2010都是“好数”。(2)证明:存在正整数,使得是“好数”,而不是
10、“好数”。2009年新知杯上海市初中数学竞赛试题(2009年12月6日)一、填空题(第1-5小题每题8分,第6-10小题每题10分,共90分)1、对于任意实数a,b,定义,ab=a(a+b) +b, 已知a2.5=28.5,则实数a的值是 。 2、在三角形ABC中,其中a,b是大于1的整数,则b-a= 。 3、一个平行四边形可以被分成92个边长为1的正三角形,它的周长可能是 。4、已知关于x的方程有实根,并且所有实根的乘积为2,则所有实根的平方和为 。5、如图,直角三角形ABC中, AC=1,BC=2,P为斜边AB上一动点。PEBC,PFCA,则线段EF长的最小值为 。6、设a,b是方程的两个
11、根,c,d是方程的两个根,则(a+ c)( b + c)( a d)( b d)的值 。7在平面直角坐标系中有两点P(-1,1) , Q (2,2),函数y=kx1 的图像与线段PQ 延长线相交(交点不包括Q),则实数k的取值范围是 。8方程xyz=2009的所有整数解有 组。9如图,四边形ABCD中AB=BC=CD,ABC=78,BCD=162。设AD,BC延长线交于E ,则AEB= 。 10、如图,在直角梯形ABCD中,ABC=BCD= 90,AB=BC=10,点M在BC上,使得ADM是正三角形,则ABM与DCM的面积和是 。二、(本题15分)如图,ABC 中ACB =90,点D在CA上,
12、使得CD=1, AD=3,并且BDC=3BAC,求BC的长。三、(本题15分)求所有满足下列条件的四位数,其中数字c可以是0。四、(本题15分)正整数n满足以下条件:任意n个大于1且不超过2009的两两互素的正整数中,至少有一个素数,求最小的n。五、(本题15分)若两个实数a,b,使得,与都是有理数,称数对(a,b)是和谐的。试找出一对无理数,使得(a,b)是和谐的;证明:若(a,b)是和谐的,且a+b是不等于1的有理数,则a,b都是有理数;证明:若(a,b)是和谐的,且是有理数,则a,b都是有理数;2009年新知杯上海市初中数学竞赛参考解答一、填空题(第1-5小题每题8分,第6-10小题每题
13、10分,共90分)1、对于任意实数a,b,定义,ab=a(a+b) +b, 已知a2.5=28.5,则实数a的值是 。 【答案】4,2、在三角形ABC中,其中a,b是大于1的整数,则b-a= 。 【答案】03、一个平行四边形可以被分成92个边长为1的正三角形,它的周长可能是 。【答案】50,944、已知关于x的方程有实根,并且所有实根的乘积为2,则所有实根的平方和为 。【答案】55、如图,直角三角形ABC中, AC=1,BC=2,P为斜边AB上一动点。PEBC,PFCA,则线段EF长的最小值为 。【答案】6、设a,b是方程的两个根,c,d是方程的两个根,则(a+ c)( b + c)( a d
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2000 新知 历年 上海市 初中 数学 竞赛 试卷 答案 试题 分开
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。