初三数学直线与圆位置关系切线长定理.pptx
《初三数学直线与圆位置关系切线长定理.pptx》由会员分享,可在线阅读,更多相关《初三数学直线与圆位置关系切线长定理.pptx(31页珍藏版)》请在咨信网上搜索。
问题问题1 1、经过平面上一个已知点,作已知、经过平面上一个已知点,作已知圆的切线会有怎样的情形?圆的切线会有怎样的情形?OOOP PPA问题问题2 2、经过圆外一点、经过圆外一点P P,如何作已知,如何作已知O O的的切线?切线?O。ABP思考思考:假设切线:假设切线PAPA已作出,已作出,A A为切点,则为切点,则OAP=90,OAP=90,连接连接OPOP,可知,可知A A在怎样的圆在怎样的圆上上?在经过圆外在经过圆外一点的切线一点的切线上,这一点上,这一点和切点之间和切点之间的线段的长的线段的长叫做叫做这点到这点到圆的切线长圆的切线长OPAB切线与切线长的区别与联系:切线与切线长的区别与联系:(1 1)切线是一条与圆相切的直线;切线是一条与圆相切的直线;(2 2)切线长是指切线长是指切线上某一点切线上某一点与与切点切点间的线段的长。间的线段的长。若从若从O O外的一点外的一点引两条切线引两条切线PAPA,PBPB,切,切点分别是点分别是A A、B B,连结,连结OAOA、OBOB、OPOP,你能发现什,你能发现什么结论?并证明你所发么结论?并证明你所发现的结论。现的结论。APO。BPA=PBOPA=OPB证明:证明:PAPA,PBPB与与O O相切,点相切,点A A,B B是切点是切点 OAPAOAPA,OBPB OBPB 即即OAP=OBP=90 OA=OB,OP=OP RtAOPRtBOP(HL)RtAOPRtBOP(HL)PA=PB OPA=OPB试用文字语言试用文字语言叙述你所发现叙述你所发现的结论的结论PA、PB分别切分别切 O于于A、BPA=PBOPA=OPB 从圆外一点引圆的两条从圆外一点引圆的两条切线,它们的切线长相切线,它们的切线长相等,圆心和这一点的连等,圆心和这一点的连线平分两条切线的夹角。线平分两条切线的夹角。切线长定理切线长定理APO。B几何语言几何语言:反思反思:切线长定理为证明:切线长定理为证明线段相等线段相等、角相角相等等提提 供了新的方法供了新的方法我们学过的切线,常有我们学过的切线,常有 五个五个 性质:性质:1 1、切线和圆只有一个公共点;、切线和圆只有一个公共点;2 2、切线和圆心的距离等于圆的半径;、切线和圆心的距离等于圆的半径;3 3、切线垂直于过切点的半径;、切线垂直于过切点的半径;4 4、经过圆心垂直于切线的直线必过切点;、经过圆心垂直于切线的直线必过切点;5 5、经过切点垂直于切线的直线必过圆心。、经过切点垂直于切线的直线必过圆心。6 6、从圆外一点引圆的两条切线,它们的切线长相等,、从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。圆心和这一点的连线平分两条切线的夹角。六个六个APO。BM 若连结两切点若连结两切点A A、B B,ABAB交交OPOP于点于点M.M.你你又能得出什么新的结又能得出什么新的结论论?并给出证明并给出证明.OP垂直平分垂直平分AB证明:证明:PAPA,PBPB是是O O的切线的切线,点点A A,B B是切点是切点 PA=PB OPA=OPB PABPAB是等腰三角形,是等腰三角形,PMPM为顶角的平分线为顶角的平分线 OP垂直平分垂直平分ABAPO。B 若延长若延长POPO交交O O于点于点C C,连结,连结CACA、CBCB,你又能得出,你又能得出什么新的结论什么新的结论?并给并给出证明出证明.CA=CB证明:证明:PAPA,PBPB是是O O的切线的切线,点点A A,B B是切点是切点 PA=PB OPA=OPB PC=PCPC=PC PCA PCB AC=BCAC=BCC例例.PA.PA、PBPB是是O O的两条切线,的两条切线,A A、B B为切点,直线为切点,直线OPOP交于交于O O于点于点D D、E E,交,交ABAB于于C C。BAPOCED(1)写出图中所有的垂直关系)写出图中所有的垂直关系OAPA,OB PB,AB OP(3)写出图中所有的全等三角形)写出图中所有的全等三角形AOP BOP,AOC BOC,ACP BCP(4)写出图中所有的等腰三角形)写出图中所有的等腰三角形ABP AOB(5)若)若PA=4、PD=2,求半径,求半径OA(2)写出图中与)写出图中与OAC相等的角相等的角OAC=OBC=APC=BPC。PBAO(3 3)连结圆心和圆外一点)连结圆心和圆外一点(2 2)连结两切点)连结两切点(1 1)分别连结圆心和切点)分别连结圆心和切点反思:在解决有关圆的切线长的问题时,往往需要我们构建基本图形。反思:在解决有关反思:在解决有关圆的切线长问题时,圆的切线长问题时,往往需要我们构建往往需要我们构建基本图形。基本图形。1.1.切线长定理切线长定理 从圆从圆外一点引圆的两条切外一点引圆的两条切线,它们的切线长相线,它们的切线长相等,圆心和这一点的等,圆心和这一点的连线平分两条切线的连线平分两条切线的夹角。夹角。小小 结:结:APO。BECDPA、PB分别切分别切 O于于A、BPA=PB,OPA=OPBOP垂直平分垂直平分AB 切线长定理为证明切线长定理为证明线段相等,角线段相等,角相等,弧相等,垂直关系相等,弧相等,垂直关系提供了理论提供了理论依据。必须掌握并能灵活应用。依据。必须掌握并能灵活应用。2.2.圆的外切四边形的两组对边的和相等圆的外切四边形的两组对边的和相等oooo外切圆圆心:外切圆圆心:三角形三边三角形三边垂直平分线的交点垂直平分线的交点。外切圆的半径:外切圆的半径:交点到三交点到三角形任意一个定点的距离。角形任意一个定点的距离。三角形外接圆三角形外接圆三角形内切圆三角形内切圆o内切圆圆心:内切圆圆心:三角形三个三角形三个内角平分线的交点。内角平分线的交点。内切圆的半径:内切圆的半径:交点到三交点到三角形任意一边的垂直距离。角形任意一边的垂直距离。A AA AB BB BC CC C分析题目已知:如分析题目已知:如图图,ABC,ABC的内切圆的内切圆O O与与BC BC、CACA、AB AB 分别相交于点分别相交于点D D、E E、F F ,且,且ABAB9 9厘米,厘米,BC BC 1414厘米厘米,CA,CA 1313厘米厘米,求求AFAF、BDBD、CECE的长的长。AECDBFO 例例.如图所示如图所示PAPA、PBPB分别切圆分别切圆O O于于A A、B B,并与圆并与圆O O的切线分别相交于的切线分别相交于C C、D D,已知已知PA=7cmPA=7cm,(1)(1)求求PCDPCD的周长的周长(2)(2)如果如果P=46,P=46,求求CODCOD的度数的度数C OPBDAE过过O O外一点作外一点作O O的切线的切线OPABO例例1 ABCABC的内切圆的内切圆的内切圆的内切圆 O O与与与与BCBC、CACA、ABAB分别相切于分别相切于分别相切于分别相切于 点点点点D D、E E、F F,且,且,且,且AB=9cmAB=9cm,BC=14cmBC=14cm,CA=13cmCA=13cm,求求求求AFAF、BDBD、CECE的长的长的长的长.解解:设设设设AF=x(cm),BD=y(cm),CEAF=x(cm),BD=y(cm),CEz(cm)z(cm)AF=4(cm),BD=5(cm),CE=9(cm).AF=4(cm),BD=5(cm),CE=9(cm).O O与与与与ABCABC的三边都相切的三边都相切的三边都相切的三边都相切AFAFAE,BDAE,BDBF,CEBF,CECDCD则有则有则有则有x xy y9 9y yz z1414x xz z1313解得解得解得解得x x4 4y y5 5z z9 9例例.如图,如图,ABCABC中中,C=90,C=90,它的它的内切圆内切圆O O分别与边分别与边ABAB、BCBC、CACA相切相切于点于点D D、E E、F F,且,且BD=12BD=12,AD=8AD=8,求求O O的半径的半径r.r.OEBDCAF1.1.一个三角形有且只有一个内切圆;一个三角形有且只有一个内切圆;2.2.一个圆有无数个外切三角形;一个圆有无数个外切三角形;3.3.三角形的内心就是三角形三条内角平三角形的内心就是三角形三条内角平 分线的交点;分线的交点;4.4.三角形的内心到三角形三边的距离相等。三角形的内心到三角形三边的距离相等。分析分析 试说明圆的试说明圆的外切四边形的两组外切四边形的两组对边的和相等对边的和相等 OABCDEF OABCDE选做题:如图,选做题:如图,ABAB是是O O的直径,的直径,ADAD、DCDC、BCBC是切线,点是切线,点A A、E E、B B为切点,若为切点,若BC=9BC=9,AD=4AD=4,求,求OEOE的长的长.BDEFOCA如图,如图,ABCABC的内切圆的半径为的内切圆的半径为r,r,ABCABC的周长为的周长为l,l,求求ABCABC的面积的面积S.S.解:解:设设ABC的内切圆与三边相切于的内切圆与三边相切于D、E、F,连结连结OA、OB、OC、OD、OE、OF,则则ODAB,OEBC,OFAC.SABCSAOBSBOC SAOC ABOD BCOE ACOF lr设设ABC的三边为的三边为a、b、c,面积为,面积为S,则则ABC的内切圆的半径的内切圆的半径 r2Sabc三角形的内切圆的有关计算三角形的内切圆的有关计算ABCEDFO如图,如图,RtABC中,中,C90,BCa,ACb,ABc,O为为RtABC的内切圆的内切圆.求:求:RtABC的内切圆的半径的内切圆的半径 r.设设设设AD=AD=x x,BE=,BE=y y,CE,CE r r O O与与与与RtRtABCABC的三边都相切的三边都相切的三边都相切的三边都相切ADADAF,BEAF,BEBF,CEBF,CECDCD则有则有则有则有x xr rb by yr ra ax xy yc c解:解:设设RtABC的内切圆与三边相切于的内切圆与三边相切于D、E、F,连结连结OD、OE、OF则则OAAC,OEBC,OFAB。解得解得解得解得 r rabc2设设RtABC的直角边为的直角边为a、b,斜边为,斜边为c,则,则RtABC的的内切圆的半径内切圆的半径 r 或或rabc2ababcABCEDFO如图,如图,RtABC中,中,C90,BC3,AC4,O为为RtABC的内切圆的内切圆.(1)求)求RtABC的内切圆的半径的内切圆的半径.(2)若移动点)若移动点O的位置,使的位置,使 O保持与保持与ABC的边的边AC、BC都相切,求都相切,求 O的半径的半径r的取值范围。的取值范围。设设设设AD=AD=x x,BE=,BE=y y,CE,CE r r O O与与与与RtRtABCABC的三边都相切的三边都相切的三边都相切的三边都相切ADADAF,BEAF,BEBF,CEBF,CECDCD则有则有则有则有x xr r4 4y yr r3 3x xy y5 5解:解:(1)设)设RtABC的内切圆与三边相的内切圆与三边相切于切于D、E、F,连结,连结OD、OE、OF则则OAAC,OEBC,OFAB。解得解得解得解得 r r1 1在在在在RtRtABCABC中,中,中,中,BCBC3,AC3,AC4,4,ABAB5 5由已知可得四边形由已知可得四边形由已知可得四边形由已知可得四边形ODCEODCE为正方形,为正方形,为正方形,为正方形,CDCDCECEODOD RtABC的内切圆的的内切圆的半径为半径为1。(2 2)如图所示,设与)如图所示,设与BCBC、ACAC相切的最大圆与相切的最大圆与BCBC、ACAC的切点的切点分别为分别为B B、D,D,连结连结OBOB、OD,OD,则四则四边形边形BODCBODC为正方形。为正方形。ABODCOBOBBCBC3 3半径半径r r的取值范围为的取值范围为0 0r3r3几何问题代数化是几何问题代数化是解决几何问题的一解决几何问题的一种重要方法。种重要方法。基础题:基础题:1.1.既有外接圆既有外接圆既有外接圆既有外接圆,又内切圆的平行四边形是又内切圆的平行四边形是又内切圆的平行四边形是又内切圆的平行四边形是_._.2.2.直角三角形的外接圆半径为直角三角形的外接圆半径为直角三角形的外接圆半径为直角三角形的外接圆半径为5cm,5cm,内切圆半径为内切圆半径为内切圆半径为内切圆半径为1cm,1cm,则此三角形的周长是则此三角形的周长是则此三角形的周长是则此三角形的周长是_._.3.3.OO是边长为是边长为是边长为是边长为2cm2cm的正方形的正方形的正方形的正方形ABCDABCD的内切圆的内切圆的内切圆的内切圆,EF,EF切切切切 OO 于于于于P P点,交点,交点,交点,交ABAB、BCBC于于于于E E、F F,则,则,则,则BEFBEF的周长是的周长是的周长是的周长是_._.EF HG正方形正方形正方形正方形22cm22cm2cm2cm4.4.小红家的锅盖坏了小红家的锅盖坏了小红家的锅盖坏了小红家的锅盖坏了,为了配一个锅盖为了配一个锅盖为了配一个锅盖为了配一个锅盖,需要测量锅盖的需要测量锅盖的需要测量锅盖的需要测量锅盖的直径直径直径直径(锅边所形成的圆的直径锅边所形成的圆的直径锅边所形成的圆的直径锅边所形成的圆的直径),),而小红家只有一把长而小红家只有一把长而小红家只有一把长而小红家只有一把长20cm20cm 的直尺的直尺的直尺的直尺,根本不够长根本不够长根本不够长根本不够长,怎么办呢怎么办呢怎么办呢怎么办呢?小红想了想小红想了想小红想了想小红想了想,采取以下方采取以下方采取以下方采取以下方法法法法:首先把锅平放到墙根首先把锅平放到墙根首先把锅平放到墙根首先把锅平放到墙根,锅边刚好靠到两墙锅边刚好靠到两墙锅边刚好靠到两墙锅边刚好靠到两墙,用直尺紧贴用直尺紧贴用直尺紧贴用直尺紧贴墙面量得墙面量得墙面量得墙面量得MAMA的长的长的长的长,即可求出锅盖的直径即可求出锅盖的直径即可求出锅盖的直径即可求出锅盖的直径,请你利用图乙请你利用图乙请你利用图乙请你利用图乙,说说说说明她这样做的道理明她这样做的道理明她这样做的道理明她这样做的道理.同学们要好好学习老师同学们要好好学习老师期盼你们快快进步!期盼你们快快进步!- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 数学 直线 位置 关系 切线 定理
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文