65回顾与思考.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 65 回顾 思考
- 资源描述:
-
强湾中学导学案 教师活动 (环节、措施) 学生活动 (自主参与、合作探究、展示交流) 学科:数学 年级:九年级 主备人:张晓霞 辅备人: 王花香 审批: 启发探索 引导合作 【知识梳理】 【随堂练习】 1.在有一个10万人的小镇,随机调查了2019人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人? 2.(1)连掷两枚骰子,它们点数相同的概率是多少? (2)转动如图所示的转盘两次,两次所得颜色相同的概率是多少? (3)某口袋里放有编号1~6的6个球,先从中摸索出一球,将它放回口袋中后,再摸一次,两次摸到的球相同的概率是多少? (4)利用计算器产生1~6的随机数(整数),连续两次随机数相同的概率是多少? 第2(2)题 课题 6.5回顾与思考 课时 1课时 课型 导学+展示 学习目标 1.回顾本章的内容,梳理本章的知识结构,建立有关概率知识的框架图. 2.用所学的概率知识去解决某些现实问题,再自我回忆和总结出实验频率与理论概率的关系. 流程 回顾思考------知识梳理---课堂检测---感悟收获---拓展延伸 重难点 重点:引导学生回顾本章内容,梳理知识结构,共同建立有关概率知识的框架图. 难点:结合实例,理解实验频率和理论概率的关系. 教师活动 (环节、措施) 学生活动 (自主参与、合作探究、展示交流) 回顾旧知 奠定基础 【回顾思考】 1.问题串: (1)某个事件发生的概率是1/2,这意味着在两次重复试验中该事件必有一次发生吗? (2)你能用试验的方法估计哪些事件发生的概率?举例说明. (3)有时通过试验的方法估计一个事件发生的概率有一定的难度,你能否通过模拟试验估计该事件发生的概率? (4)你掌握了哪些求概率的方法?举例说明. 2.当试验次数很大时,一个事件发生的频率稳定在相应的概率附近.因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率. 3.利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果;从而较方便地求出某些事件发生的概率.用树状图和列表的方法求概率时应注意各种结果出现的可能性务必相同. 4.“配紫色”游戏,投针试验,模拟试验,体现了概率模型的思想,它启示我们:概率是对随机现象的一种数学描述,它可以帮助我们更好地认识随机现象,并对生活中的一些不确定情况作出自己的决策.从表面上看,随机现象的每一次观察结果都是偶然的,但多次观察某个随机现象,立即可以发现:在大量的偶然之中存在着必然的规律. 教师活动 (环节、措施) 学生活动 (自主参与、合作探究、展示交流) 教师活动 (环节、措施) 学生活动 (自主参与、合作探究、展示交流) 巩固知识 展示交流 3.用如图所示的两个转盘进行配“紫色”游戏,其概率是多少? 4.某种“15选5”的彩票的获奖号码是从1-15这15个数字中选择5个数字(可以重复),若彩民所选择的的5个数字与获奖号码相同,即可获得特等奖.小明观察了最近100期获奖号码,发现其中竟有51期有重号(同一期获奖号码中有2个或2个以上的数字相同),66期有连号(同一期获奖号码中有2个或2个以上的数字相邻).他认为,获奖号码中不应该有这么多重号或连号,获奖号码不可能是随机产生的,有失公允.小明的观点有道理吗?重号的概率大约是多少?利用计算器摸拟试验估计重号的概率. 5.小明和小亮用如图所示的转盘做游戏,转动两个转盘各一次. (1)若两次数字和为6,7或8,则小明获胜,否则小亮胜.这个游戏对双方公平吗?说说你的理由. (2)若两次数字和为奇数,则小明获胜,若数字和为偶数则小亮胜.这个游戏对双方公平吗?说说你的理由. 提高训练 活动探究 【课堂检测】 1.一个密码锁的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将锁打开.粗心的小明忘了其中中间的两个数字,他一次就能打开该锁的概率是多少? 2.桌子上放有6张扑克牌,全都正面朝下,其中恰有2张是老K.两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K,则红方胜,否则蓝方胜.你愿意充当红方还是蓝方?与同伴实际做一做. 【感悟收获】 概率是对随机现象的一种数学描述,它可以帮助我们更好地认识随机现象,并对生活中的一些不确定情况作出自己的决策. 从表面上看,随机现象的每一次观察结果都是偶然的,但多次观察某个随机现象,立即可以发现:在大量的偶然之中存在着必然的规律. 【拓展延伸】 1.地面上铺满了正方形的地板砖(40cm×40cm),现向上抛掷半径为5cm的圆碟,圆碟与地砖的间隙相交的概率大约是多少?具体做做看. 2.到相关部门查询一下当地的汽车总数,组成合作小组,设计一个方案估计一下当地某种汽车的数量,并继续查询有关机关,检验你们的估计结果.同班交流各组结果,讨论如何获得更为精确的估计值.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




65回顾与思考.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/847572.html