概率论与数理统计书PPT课件.ppt
《概率论与数理统计书PPT课件.ppt》由会员分享,可在线阅读,更多相关《概率论与数理统计书PPT课件.ppt(267页珍藏版)》请在咨信网上搜索。
1.CH1 随机事件与概率 1.1 随机试验1.1.1 研究对象的分类 确定性问题:在一定的条件下,必然会发生的问题。比如:弹簧受到外力作用会发生形变,水从高处往低处流,同性电相斥、异性电相吸等。(高等数学、线性代数等课程研究的对象)2.不确定问题:研究对象的某种现象在出现之前我 们不知道它是否会发生。例如:抛一枚硬币出现正面或背面现象 口袋里有红、黄、蓝三色球若干,随便取一球是红球这一现象,向某一目标打一发炮弹,是否击中目标等。(我们这个课程研究的对象)3.1.1.2 随机试验试验:指对研究对象的观测,一次观测称为一次试验。随机试验:指对随机现象的观测,一次观测称为一次随机试验。比如:抛一次硬币或一次抛多枚硬币,观测出现正面的个数等。4.(3)试验中一切可能出现的结果可以预先知道。必然性(统计规律性)随机试验必需满足:(1)在相同条件下,试验可以重复进行。可重复性(2)每次试验中可以出现不同的结果,而不能预先知道发生哪种结果。偶然性随机试验一般用字母E表示。5.例1 一些随机试验的例子n口袋里分别有红、黄、蓝球3个,每次从口袋中取2个球(有放回)。n连续向一个目标发射10法炮弹。n连续观察一周每天的下雨情况。n买彩票中奖,如此等等。6.1.2 随机事件与样本空间基本事件 指随机试验中,其每一个可能出现的结果。样本空间 指基本事件的全体组成的集合基本事件称为样本空间的点。1.2.1 基本事件与样本空间7.例2n投掷一枚骰子一次,有6个基本事件,即点数:1 2 3 4 5 6。该随机试验的样本空间为:8.1.2.2 随机事件随机事件:某些基本事件组成的集合。又称为复合事件。比如,例2中的点数不超过3点的集合。9.几个特殊的随机事件n必然事件:每次试验中必然发生的事件,记为。比如:例2中的点数小于等于6的集合。n不可能事件:每次试验中不可能发生的事件,n记为。比如:例2中的点数大于6的集合。10.1.2.3事件之间的关系及其运算 必然事件包含了样本空间的所有点,不可能不包含样本空间的任何点。一般的事件存在着一些联系。事件的包含关系定义:若事件A A发生必导致事件B B发生,则称事件B B包含事件A A。记为:B B A A或A BA B。比如例2 2中,A A:表示小于3 3点事件,B B表示小于5 5点事件。)11.事件相等若事件 且 ,则称事件A和事件B相等。记为AB。即:事件A与B所包含的基本事件是一样的。12.定义:若事件A A发生或事件B B发生,则称这样的事件为并事件,记为:A BA B。结论:;。事件的并(或称和)注:包括事件A与B 同时发生AB13.例3nA=1,2,7,8,a,b,c,B=1,5,8,b,e则 AUB=1,2,5,7,8,a,b,c,e14.定义:在试验中,事件A与事件B同时发生的事件称为事件A与事件B的交(或积),记为AB(或AB)。事件的交(积)在例3中,AB=1,8,b结论:;。参考上图解释15.逆事件 发生的属于样本空间,但不属于A的事件,称为A的逆事件,记为 。A 在例2中,如果A=1,3,5,则 16.事件的差:在试验中,事件A发生而事件B不发生的事件称为事件A与事件B的差。记为AB。结论:。ABAB在例3中,A-B=2,7,a,c17.定义:在一次试验中,若事件A、B不能同时发生,则称事件A、B为互不相容,记为:AB。否则称两事件相容。结论:从基本事件说,互不相容事件没有公有的基本事件。显然,在一次试验中,两个基本事件不能同时发生,所以任何两个基本事件都是互不相容事件。事件的相容性18.交换律:ABBA,ABBA 结合律:(AB)CA(BC),(AB)CA(BC)分配律:(AB)C(AC)(BC),(AB)C(AC)(BC)事件的运算律德摩根公式:19.例4、在一个口袋里装有红、黄、白三种球,每种球都不止一个,一次任取两个球,观察它们的颜色。设A两个同色球,B至少一个红色球,问AB由哪些基本事件组成?解 用R表示红球,Y表示黄秋,W 表示白球则:A=RR,YY,WW,B=RR,RY,RWA B=RR,RY,RW,YY,WW 20.思考:设A、B、C为三个事件,试将下列事件用A、B、C表示出来。(1)三个事件都发生;(2)三个事件都不发生;(3)三个事件至少有一个发生;(4)A发生,B、C不发生;(5)A、B都发生,C不发生;(6)三个事件中至少有两个发生(7)不多于一个事件发生;(8)不多于两个事件发生。21.例5、下列命题中,正确的有哪些?(1)若A B,则ABA;(2)若A B,则 ;(3);(4)若 ,则 ;(5);(6)若 ,则 ;对对对解决这类问题,最好的方法是用图示法!22.(1)所有基本事件,构成一个互不相容的事件组。(2 2)所有基本事件的并是必然事件。基本事件的重要性质:注注意意23.1.3随机事件的概率1.2.1事件的频率频率:如果在n次重复随机试验中,事件A发生了nA次,那么就称比值 fn(A)为事件A发生的频率,其中 。对任意随机试验E,频率具有性质:24.(1)对任意事件A,。(2)。(3)对任意有限多个互不相容的事件A1、A2 Am 有 。说明由频率的定义可见,如果事件A发生的可能性愈大,频率就愈大;另一方面,频率还有稳定性,即当n很大时,频率稳定在一个固定值附近摆动。25.1.1.3.1 3.1 概率的定义(1)概率的统计定义定义1:在同一组条件下所作的大量重复试验中,如果事件A A发生的频率总是在一个确定的常数 p p 附近摆动,并且逐渐稳定于p p,那末数 p p 就表示事件A A发生的可能性大小,并称它为事件A A的概率,记作 。26.(2)概率的公理化定义定义2:设E是随机试验,是E的样本空间,对于E的每一个事件A赋予一个实数值,记为 ,称为事件A的概率,如果集合函数 满足下列条件:(1)非负性:(2)规范性:27.(3)可列可加性:设事件互不相容,则有:这3条也是概率的三个基本性质,此外概率还有一些其他性质:28.(1)(2)(3)加法定理(4)(5)若 ,则有 。29.概率的加法公式可推广到有限个事件的并的情形。如:1.已知 ,则 (A)0.4;(B)0.5;(C)0.3;(D)0.7。例630.2、设 ,且 ,则 ()。3 3、设A A、B B、C C 为随机事件,且 ,0.1250.125,则A A、B B、C C至少出现一个的概率是 。31.特殊概型 等可能概型等可能概型(古典概型):如果一个随机试验E具有如下的特征,则称为等可能概型。(1)基本事件的全集是由有限个基本事件组成的;(2)每一个基本事件在一次试验中发生的可能性是相同的。32.定义:在古典概型中,若样本空间包含的基本事件总个数为n n,其中事件A A包含的基本事件个数为m m,则事件A A的概率为 古典概型中概率的计算 一般方法:通过计算基本事件个数,计算概率。33.例7 7、从1 1、2 2、3 3、4 4、5 5、6 6、7 7、8 8、9 9九个数字中,随机地取出3 3个数字,组成一个三位数,求这个三位数为奇数的概率。例8 8、连续三次抛一枚硬币,求恰好出现一次正面的概率和恰好出现二次正面的概率。解:,;解:,;对于初学者,可以用描述方法,求解类似问题。34.例9 9、袋中有1616个白球,4 4个红球,从中取出3 3个,求至少有一个是红球的概率。解:,;另解:对A的逆事件 有,;注意有放回取球与无放回取球的区别。35.例1010、盒中有a个黑球,b个白球,从中有放回的抽取n n个球,求事件A A:“刚好取到k k个黑球”的概率。解:例1111、12 12名运动员中有4 4名种子选手,现将运动员平均分成两组,问4 4名种子选手:(1 1)各有两人分在一组的概率;(2 2)分在同一组的概率。(N个球中有k个黑球)36.解(1):,;(2):;例1010、一盒中含有N N1 1个黑球,一个白球,每次从盒中随机地取一只球,并还入一只黑球,这样继续下去,求事件A A:“第k k次取到黑球”的概率。借助逆事件计算概率是概率计算中比较常用的方法。37.解:显然,这是一个古典概型的问题,样本空间的大小为 ;而要求概率的事件A所包含的基本事件个数就不容易计算了,但可考虑其逆事件38.例1111、盒中有a a个黑球,b b个白球,把球随机地一只只取出(不放回),求事件A A:“第k k(1 k 1 k ab)次取到黑球”的概率。解:另解:有放回是有序行为,无放回是无序行为表明前k-1次是从a+b-1个球中取出的39.1.4 条件概率1.4.1条件概率在实际问题中,除了要知道事件A的概率 外,有时还要考虑在“已知事件B发生”的条件下,事件A发生的概率。一般情况下,两者的概率是不相等的,为了区别所见,我们把后者称为条件概率。1-440.条件概率定义n定义:若A、B为同一随机试验的两个事件,且 ,则 称在B发生条件下A发生的概率为事件A关于B的条件概率,记 。41.注意:条件概率也是概率。所以,它满足概率的一切性质。如:但 未必成立。条件概率计算 AABB42.例12、设10件产品中有2件次品,8件正品。现每次从中任取一件产品,且取后不放回,试求下列事件的概率。(1)前两次均取到正品(2)第二次取到次品(3)已知第一次取到次品,则第二次也取到次品43.解:,这显然是抽签的公平性,(考虑样本空间的改变)或者:44.问题(3)也可考虑:设A1:“第一次取到次品”A2:“第一次取到次品”45.2.概率的乘法定理 定理:两事件的积事件的概率等于其中一事件的概率与另一事件在前一事件发生下的条件概率的乘积。即:P(AB)=P(B)P(A B)P(A)P(B A)46.例13:某人忘记了电话号码的最后一个数字,因而随意拨号,求(1)拨号不超过3次而接通电话的概率。(2)若已知电话号码的最后一个数字是奇数,求拨号不超过3 次而接通电话的概率。解:设A拨号不超过3次而接通电话,Ai第i次拨号时接通电话,i1,2,3。则:47.且 是两两互不相容的。(1)P(A)1/10 9/101/9 9/108/91/83/10 (2)P(A)1/54/51/44/53/41/33/5。48.3.3.全概率公式、贝叶斯公式 1 1、划分:设为随机试验E的样本空间,为E的一组事件,若(1)(2)则称 为样本空间的一个划分。49.设为随机试验E的样本空间,为样本空间的一个划分。则:2 2、全概率公式50.例14、设有编号1,2,3的3个盒子,分别有4,5,6个黑球,5,4,3 个白球,今任取一个盒子,再从盒子中任取一球(每一盒,每一球均等可能被取到),求事件A:“取出的球是白球”的概率。解:设事件:“此球属于第i个盒子”。则由全概率公式得:51.52.3.贝叶斯公式在上述例子中,我们知道事件A在各种原因 下发生的平均概率可以通过全概率公式求出。但是,若在事件A已发生的条件下,求某个事件的概率,这个问题的解决,就要求助于贝叶斯公式了。53.贝叶斯公式:54.例15、在例14中,若已知从盒中取出的一球是白球,问此球是来自一号盒子的概率为多少?解:由前可知 55.例16、在数字通讯中,信号是由0和1组成的。若发送的信号为0和1的概率分别为0.7和0.3;由于随机干扰,当发送信号是0时,接收为0和1的概率分别为0.8和0.2;当发送信号是1时,接收为1和0的概率分别为0.9和0.1。求已知收到的信号是0时,发送信号也为0(即没有错误)的概率。56.解:设事件 :“发送信号为0”,事件 :“发送信号为1”,事件A:“接收信号为0”由贝叶斯公式得:57.例17、假定用血清甲胎蛋白法诊断肝癌,根据以往经验,患者用此法能被查出的概率为0.95,非患者用此法被误诊的概率为0.1。假定人群中肝癌的患病率为0.0004。现在若有一人被此法诊断为肝癌,求此人真正患有肝癌的概率。解:设事件A:“诊断为患有肝癌”事件 :“此人真正患有肝癌”,事件 :“此人未患肝癌”58.由贝叶斯公式得:59.1.5.1两个事件的独立性定义:设事件A、B是某一随机试验的任意两个事件,若满足 ,则称事件A、B互相独立。独立的性质:如果A、B相互独立,则有1.5事件的独立性1-5独立性与不相容性是两个不同的概念60.例18:在20个产品中有2个次品,从中接连抽两个产品,第一个产品抽得后放回,再抽第二个产品,求(1)已知第一次取得次品的情况下,第二次取得次品的概率(2)第二次取得次品的概率。解:设事件A第一次抽到次品,事件B第二次抽到次品,61.(1)因是有放回的:P(B|A);(2)因是有放回的:P(B)P(B|A)所以,P(B|A)P(B)。定理:若事件A与B相互独立,且 ,则62.独立扩张定理:若事件A与B独立,则、也相互独立。希望大家能熟练地运用扩张定理63.1.5.21.5.2多个事件的独立性 定义:设事件A、B、C,若有则称A、B、C相互独立。64.即使A、B、C两两互相独立,也不能说明A、B、C互相独立。注注意意例19:如图所示,三个元件 a、b、c 安置在线路中,各个元件发生故障是相互独立的,且概率分别为0.3、0.2、0.1,求该线路由于元件发生故障而中断的概率。65.解:设 A元件a发生故障 B元件b发生故障 C元件c发生故障 D线路中断,则DA(BC)P(D)P(A)P(BC)P(ABC)P(A)P(B)P(C)P(A)P(B)P(C)0.30.20.10.30.20.10.314 66.例20:假若每个人的血清中含有肝炎病毒的概率为0.004,混合100个人的血清,求此血清中含有肝炎病毒的概率。解:设Ai第i个人的血清中含有肝炎病毒,可以认为它们是相互独立的。67.例2121、设 ,若事件A A与 B B互斥,则 ;若事件A A与B B独立,则 。例2121、设每门高射炮射击飞机的命中率为0.4,现若干门高射炮同时独立地对飞机进行一次射击,问欲以0.95的把握击中飞机,至少需要多少门高射炮?68.贝努里试验:只有两个可能结果的试验称为贝努里试验。n次独立试验的特点:(1)每次试验的条件都相同,且只有两个可能的结果。(2)每次试验是相互独立的。n 次独立试验又称为n重贝努里试验。69.n重贝努里试验中概率的计算:例10、某人投篮一次命中的概率是0.6,求(1)他投篮5次命中4次的概率;(2)他投篮5次至少命中3次的概率;70.例22、进行一系列独立的试验,每次试验成功的概率为p p,则在2 2次成功之前已经失败3 3次的概率为()(A);(B)(C);(D)71.2-1 随机变量 为了能用变量、函数及微积分等工具来研究随机现象,引进了概率论中的另一重要概念随机变量。2.1.12.1.1随机变量 2-1 随机变量 2.1随机变量CH272.有些随机现象的基本事件,虽然不表现为数量,但仍可以通过人为地规定使它们数量化,使这个随机现象的结果能用变量来表示。如:掷一枚硬币,观察正反面的情况,e1=正面向上,e2=反面向上。引进变量,规定:e1=0,e2=1,也将其基本事件和实数对应了起来。73.定义:设E是一个随机试验,是其样本空间,如果对每一个 ,有唯一的实数X X与之对应,我们就称X X是E E的一个随机变量。由定义可知,随机试验E的随机变量不 是唯一的。说明74.随机变量也经常用希腊字母、等表示。随机变量的可取值范围是基本事件的全集所对应的实数范围。引进随机变量后,随机事件可以用随机变量在实数轴上某一个集合中取的值来表示,所以,研究随机事件的概率就转化为研究随机变量取值的概率。75.2.2 离散型随机变量离散型随机变量:随机变量的可取值范围,有的可以排列出来,有的不能排列出来。把可取值能按一定的次序一一列举出来的随机变量称为离散型随机变量。2.2.1离散型随机变量的分布列76.定义:如果随机变量的可取值为且P(X=x1)p1、P(X=x2)p2、P(X=xn)pn 则称P(X=xk)pk为离散型随机变量X的概率分布列,简称分布列或分布律。分布律又常常表示为表格的形式:X x1 x2 xk P p1 p2 pk 77.3.离散型随机变量的分布列的性质 反之,若数列 满足这两条性质,则一定是某一离散型随机变量的分布列。(1)(2)78.例1、一射手对某一目标进行射击,一次击中的概率为0.8(1)求一次射击的分布列;(2)求到击中目标为止所需的射击次数的分布列。解(1)设X=0击不中目标,X=1击中目标,则:79.p1P(X=0)0.2,p2P(X=1)0.8 且 p1p21,所以分布列为:X 0 1 pk 0.2 0.8(2)设射击到击中目标为止,射击的次数是随机变量Y,则Y1,2,3,k,。80.p1P(Y=1)0.8,p2P(Y=2)0.20.8,pkP(Y=k)0.2 k-10.8,且所以,Y的分布律为 Y 1 2 k pk 0.8 0.20.8 0.2 k-10.8 81.例2、把4个球任意的放到3个盒子中,令X表示落到第 1个盒中球的个数,求X的分布列。分析:4个球任意的放到3个盒子中,落到第1个盒中球的个数可能取0、1、2、3、4 这5个数值。4个球放到3个盒子中有34种放法,表示有 k 个球落到第1个盒中,这 k 个球有 种取法,其余的4k个球任意放到2,3两个盒中有 种放法,所以:82.例3、设离散型随机变量X的分布列为 求正数 a 的值。83.解:所有这类问题都需要用分布律的性质解决所以,84.例4、设离散型随机变量X的分布列其中,为已知,求常数C。解:85.对随机变量而言,除了要研究其分布列以外,还要研究其分布函数 。根据上一节的内容可得离散型随机变量X的分布函数为 从几何上来看,这个函数的图像应是阶梯型86.例5、求例2中的随机变量X的分布函数。解:X的分布列为 X 0 1 2 3 4 离散型随机变量的分布函数都是阶梯型的,也就是说函数是分段函数,X有5个取值点,分布函数就有6段。87.88.2.2.2 常见的离散型随机变量(1)(01)分布:设随机变量X只可能取0和1两个数值,它的分布为 其中 ,则称 X 服从(01)分布。89.(2)二项分布:(贝努里试验)若随机变量X的分布律为 其中 ,则称X服从参数为n,p的二项分布,记为 ,当 时,就是(0-1)分布。90.例6、为了保证设备正常工作,需配备适量的维修工人。现有同类设备300台,各台工作是相互独立的,发生故障的概率为0.001,在通常情况下,一台设备的故障由一个工人来处理。问至少要配备多少工人,才能保证设备发生故障后但不能及时维修的概率小于0.01?91.解:设需要配备N名工人。记同一时刻发生故障的设备数为X,则 。问题的实质是求最小的N,使 查表得:N+1=3,即N=2。因此,为满足要求,至少需配备2名工人。92.(3)泊松(Poisson)分布:设随机变量X可能取的一切值为0,1,2,而取各个值的概率为 。其中 ,是常数,则称X服从参数为的泊松(Poisson)分布,记为 XP()。(4)超几何分布:若X的分布律为93.(5)几何分布若随机变量X的分布律为则称X服从几何分布。以上是几种常见的离散型随机分布,要求同学们必须掌握。94.2.3.1 概念如果随机变量的取值能充满实数轴上的某个区间,甚至于整个实数轴。这样的随机变量称为连续型随机变量。2.3 连续型随机变量95.定义:设随机变量 X 的分布函数为 。若存在非负可积函数 ,使得对于任一实数 x 有 则称 X 是连续型随机变量,其中函数 称为 X 的概率密度函数,简称为概率密度。96.一个重要等式连续型随机变量取值的概率规律完全由其概率密度所决定。概率密度的性质:(1)(2)2.3.2 连续型随机变量性质97.任何一个函数 满足了(1)(2),则由定义的 也一定是某个连 续型随机变量的分布函数。连续型随机变量X在一个点上取值的概率恒为0。98.例1:设连续型随机变量X的概率密度函数为:,x +,求常数C。解:由概率密度函数的性质知这类问题是概率统计中最基本问题,必须掌握。99.这个性质说明,连续型随机变量的分布函数一定是连续函数。同时也给出了由分布函数求概率密度函数的方法。由于连续型随机变量X的分布函数为 是其概率密度函数变上限积分所定义的函数,故 一定可导,且有性质:(3)若 在x处连续,则100.例2、设连续型随机变量X的分布函数为 求常数A及其概率密度函数 。解:由分布函数的性质(3)可知,在 处是连续的,所以在 处其左、右极限都应该是1,因此A1。101.显然 而 所以 ,即概率密度函数为:102.我们还可以看 ,它们也都满足概率密度函数的性质,所以,本题的密度函数也可以取为 或 。已知分布函数,密度函数可能不唯一。103.一般的,同一个连续型随机变量X的概率密度函数可以有许多,但它们除了在有限个点或可数个点上不相等外,其它点都相等。也即连续型随机变量X的概率密度函数是“几乎处处”唯一的。104.例3、设连续型随机变量X的概率密度函数为 求X的分布函数 。解:由 可得105.106.连续型随机变量X而言,概率为0的事件未必是不可能事件;概率为1的事件也未必是必然事件。在计算连续型随机变量X在某一区间内的概率时,可以不必区分是开区间还是其它类型的区间,它都等于概率密度函数在此区间上的定积分。107.2.3.3 几个重要的连续型随机变量 1、均匀分布 记为 。设有连续型随机变量X,其概率密度为 则称X在区间上服从均匀分布,108.均匀分布的分布函数109.例4、设随机变量K ,求方程 有实根的概率。解:K 的密度:方程有实根,即110.2 2、指数分布若随机变量X具有密度:其中,是常数,则称 X 服从参数为 的指数分布。记为:X 。(指数分布又常被称为寿命分布)分布函数:111.例5、某种电子元件寿命服从参数(小时)的指数分布。问:5个这样的元件连续使用了2000小时后恰有2个损坏的概率和没有一只元件损坏的概率。解:密度为:112.一个元件的寿命大于2000小时的概率为所以,2000小时后该元件损坏的概率为:113.记Y为 5 个元件使用2000小时后损坏的个数,则:所以,2个元件损坏的概率没有元件损坏的概率:114.指数分布的特性:无记忆性。我们看下面的例子:例6、某种电器元件的使用寿命X服从参数为 2000的指数分布(单位:小时)(1)任取一个元件,求能正常使用1000小时以上的概率。(2)求其正常使用1000小时后还能使用1000小时的概率。115.解:X的密度为(1)(2)116.由本题可见,指数分布的无记忆性;其实,不仅是指数分布有这样的性质,几还有其他分布也同样具有这样的性质。117.3.3.正态分布 如果连续型随机变量X的密度函数为:其中、都是常数(0),则称X服从参数为、的正态分布,记为:XN(,2)。118.正态曲线具有以下性质:(1)曲线位于X轴的上方,以直线x=为对称轴,它向左向右对称地无限延伸,并且以X轴为渐近线;(2)当x=时曲线处于最高点,当x向左右远离时,曲线逐渐降低,整条曲线呈现“中间高、两边低”的形状;119.(3)参数决定了正态曲线的形状,愈大,曲线愈“矮胖”(即分布愈分散),愈小,曲线愈“高瘦”(即分布愈集中于的附近)。参数确定曲线的位置,反映了分布 的集中点,由于曲线关于直线 x=对称,所以称为正态分布的分布中心。反映了分布的分散程度。120.当0、1时的正态分布称为标准正态分布,记为N(0,1),其密度函数为:分布函数为:121.正态分布与标准正态分布的联系:证:Y 的分布函数为定理2.5:设 X 则服从 。122.重要公式:123.例7、设 ,(1)求(2)求常数a,使(3)求常数a,使解:这是个重要例子,必须会做。124.(2)(3)125.126.例8、某科统考成绩近似服从正态分布 在参加统考的人中,及格者100人,(及格分数为60分)计算:(1)不及格人数。(2)估计第10名的成绩。解:(1)设考生的成绩为 X,显然:127.若参加考试人数是 n,则有128.(2)设第10名的成绩为 a 分,则129.分位点:给定常数 ,若存在数 满足 ,则称 为随机变量X的上 分位点,记为 ,当 时,称为随机变量X的中位数。yxo130.一般的,上 分位点可查表得到例:在其它一些书上,也有将上 分位点称为临界点。131.例9、测量某一目标的距离时,测量误差X(cm)N(50,1002),求:(1)测量误差的绝对值不超过150厘米的概率。(2)在三次测量中至少有一次误差的绝对值不超过150厘米的概率。132.解:(2)由此可知,3次测量中,3次误差都超过150的概率P(A)为133.134.2.3.4随机变量函数的分布本节通过几个例子来说明怎样求连续型随机变量函数的分布,这类问题是概率课程最基本的问题,必须熟练掌握。一般提法:设随机变量X服从某种分布,求随机变量X的函数g(X)的分布。135.的分布。离散型随机变量函数例1 设随机变量X具有如下的概率分布X 0 1 3 5 P 0.2 0.4 0.3 0.1求随机变量求随机变量136.解 先确定随机变量Y的可能取值,根据随机变量X 的取值得到 Y -1 1 17 49P 0.2 0.4 0.3 0.1137.的分布。离散型随机变量函数例2 设随机变量X具有如下的概率分布X -1 0 1 5 P 0.2 0.4 0.3 0.1求随机变量求随机变量138.解 先确定随机变量Y的可能取值,根据随机变量X 的取值得到 Y -1 1 49P 0.4 0.5 0.1一般地,离散型随机变量的函数还是离散型随机变量一般地,离散型随机变量的函数还是离散型随机变量139.连续型随机变量函数例3 设随机变量X 的密度函数为求随机变量Y=exp(X)的概率密度函数。140.n解 根据Y的表达式知 Y 非负。对于这类问题解体思路是先求Y 的分布函数,再求密度函数。141.求Y的密度函数。n例4 已知 XN(0,1),n解 142.性质定理n设X 是连续型随机变量,且具有密度函数 f(x).设y=g(x)是x的严格单调函数,且具有反函数,则随机变量Y=g(X)也是连续随机变量,其密度函数为143.n利用性质定理,再考虑例3的解得到对于例对于例4 4,则不能这样处理,因为严格单调的条件不满足,则不能这样处理,因为严格单调的条件不满足144.3.1二维随机变量及其分布3.1.1 概念 定义3.1:设 是随机试验 E 的样本空间,X和Y是定义在 上的随机变量,由它们构成的二维向量(X,Y)称为 E 的一个二维随机变量。31 多维随机变量及其分布CH3 多维随机变量及其分布145.定义3.2:设(X,Y)是二维随机变量,二元函数 称为二维随机变量(X,Y)的联合分布函数,或称为(X,Y)的分布函数。146.F(x,y)几何解释:点落在 左下方阴影部分的概率147.联合分布函数的性质:(1)148.(2)对 x、y 分别是单调非减的。(4)对任意的点(3)关于 x 右连续,关于 y 右连续。即149.性质(4)正是一维随机变量与二维随机变量的不同之处。也就是说,一个函数 仅满足了前三条性质,仍未必是二维随机变量的分就是不满足性质(4)。布函数。例如:150.如果,二维随机变量(X,Y)的一切可取值为有限多对,或可列多对,则称(X,Y)为二维离散型随机变量。定义3.3:设二维离散型随机变量(X,Y)所有可能取得值为(xi,yj),i,j1,2,则称:3.1.2 二维离散型随机变量151.为(X,Y)的联合分布列,或称为(X,Y)的分布列。(X,Y)的分布列也可以用如下的表格表示:YX152.分布列的性质:(1)(2)例1(二维01分布)设一个袋中有2个黑球,3个白球,从中任取2个球,X 表示第一次取出的白球个数,Y 表示第二次取出的白球个数,分别求出(1)有放回抽取,(2)不放回抽取时,(X,Y)的分布律。153.解:显然,(X,Y)可取值为 (1)有放回抽取(2)不放回抽取154.将它们用表格表示为:(1)YX(2)YX155.例2、甲、乙两人独立地各进行两次射击,假设甲的命中率为0.2,乙的命中率为0.5,以 X 和 Y 表示甲和乙的命中次数,求 X 和 Y 的联合分布列。解:显然 XB(2,0.2),YB(2,0.5)。因此,X和 Y的分布列分别为X 0 1 2pk 0.64 0.32 0.04Y 0 1 2pk 0.25 0.5 0.25156.由于 X、Y 独立,所以所以,X、Y 的联合分布列为 0 1 20 0.640.25 0.320.25 0.040.251 0.640.5 0.320.5 0.040.52 0.640.25 0.320.25 0.040.25XY157.3.1.3、二维连续型随机变量定义3.4:设 是二维随机变量(X,Y)的分布函数,若存在着非负可积函数 ,使对一切的 有158.则称(X,Y)是二维连续型随机变量,函数 称 为二维连续型随机变量的联合概率密度函数。按照密度函数的性质,必须满足:(1)(2)(3)若 在点 处连续,则有:159.(4)设 G 是 xoy 平面上的一个区域,点落在G内的概率为:160.例3、设随机变量(X,Y)的概率密度为求(1)常数A;(2)(X,Y)落在G=(x,y)|0 x+内的概率。解:由密度函数的性质得:161.162.例4(二维正态分布):设对给定的常数其密度函数为:163.3.2 边缘分布定义3.5:设 是(X,Y)的联合分布函数,令分别称为二维随机变量(X,Y)的边缘分布函数3.2.1 边缘分布函数164.3.2.2.离散型二维随机变量的分布律165.例1:在3.1.2例1中,分别求出(X,Y)关于 X 和 Y的边缘分布。解:在3.1.2例1中,(1)有放回时,我们已求出166.用表格表示为:(1)YXpjpi167.(2)不放回时,我们已求出168.用表格表示为:(2)YXpjpi169.3.2.3 连续型二维随机变量的边缘概率密度定义3.5 设(X,Y)是二维随机变量,其联合密度函数为f(x,y),则边缘密度为 例2:求3.1.3例3的边缘分布170.n例3 设随机变量(X,Y)的联合密度为求边缘密度 。171.n 解 综合得综合得172.3.3 条件分布定义3.6:设 X、Y 是两个随机变量,若有 ,对任意的 ,称为在 Xx 下,Y 的条件分布函数,记为:,同样可以定义:3.3.1 条件分布函数173.但当 X 是连续型随机变量时,由于 式上式无意义,因此,在一般情况下,设(X,Y)的联合分布函数为 ,若下列极限存在,则称此极限为在 Xx 下,Y 的条件分布函数记为 。如果(x,y)为连续点,则 =174.3.3.2 离散型随机变量的条件分布律设(X,Y)的联合分布律为其边缘分布律为 pi 和 p j 称为在 条件下随机变量 X 的分布律。同理可定义另一个条件分布律175.例1、向一目标进行独立射击,每次击中目标的概率为 p,令 X 表示首次击中目标所需的射击次数,Y 表示第二次击中目标所需的射击次数,求(X,Y)的联合分布律和条件分布律。显然,(X,Y)可能取的一切值为176.设每次击中目标记为事件 A,由于射击是独立的,所以第 i 个第 j 个(令 )我们再求其边缘分布律:177.由条件分布律的定义得:178.179.3.3.3 连续型随机变量的条件密度设(X,Y)是二维连续型随机变量,其联合分布密度为 ,边缘概率密度分别为 、,则在条件 Yy 下的随机变量 X 的分布函数为:180.同理可得:即:181.由上可知:例2、设二维随机变量(X,Y)在区域 上服从均匀分布,求条件概率密度 。182.解:因为(X,Y)服从均匀分布,且圆面积为。所以,联合概率密度为:边缘分布为:183.所以,当 时,条件分布为:184.这是一个已知联合分布求条件分布的例子。185.解:显然X 的密度为类似的,对给定的 ,在 下,Y 的条件概率密度为例4、在区间 上任取一点,设其坐标为 X,当观察到 时,Y 在 上任取,求 Y 的概率密度 。186.因此例5、设(X,Y)的联合密度为187.解:即从而求:188.所以189.定义3.7:设 及 分别是二维随机变量(X,Y)的联合分布和边缘分布函数,若对一切的 ,有 则称随机变量 X 和 Y 是相互独立的。3.4 随机变量的独立性190.相互独立的两个充要条件:定理3.4:设(X,Y)是二维离散型随机变量,则:191.定理3.5:设(X,Y)是二维连续型随机变量,则:例1、已知随机变量 X 和 Y 的分布律为:192.而且 (1)求 X 和 Y 的联合分布律;(2)问 X 和 Y 是否独立?解:(1)由于 ,所以即所以,X 和 Y 的联合分布律有如下形式193.即 1 0 1 p j 0 0 1 0 0 pi YX因此,X、Y 不独立。(2)由分布律可见:而194.例2、一电子仪器由两部分构成,以 X 和Y 分别表示两部件的寿命(单位:千小时),已知 X 和 Y 的联合分布函数为(1)问 X 和 Y 是否独立;(2)求两部件的寿命都超过100小时的概率。195.由知,X 与 Y 相互独立。(2)解(1)196.197.若(X,Y)是随机向量,如何求 的分布呢?这就是本节要讨论的问题。例1、设随机变量 X、Y 相互独立,其分布密度函数分别为3.5二维随机变量的函数的分布198.3.5.1离散型随机变量函数的分布n设X,Y均是离散型随机变量,Z=g(X,Y)是关于随机变量X,Y的函数,则Z也是离散型随机变量,且Z的可能取值及其概率由随机变量X,Y唯一确定。下面我们借助一个例子来介绍Z的具体求法。199.X X例例1 1 已知二维随机变量(已知二维随机变量(X X,Y Y)的联合分布率为:)的联合分布率为:y y分别求分别求Z=X+YZ=X+Y与与U=XYU=XY的概率分布函数。的概率分布函数。200.同理可得 Z 的可能取值为0,1,2,3,4,5,6。201.Z的分布律为 202.U 的可能取值为0,1,2,3,4,6,9n经计算得U的分布律为203.求随机变量 Z2XY 的分布密度。和例2 设随机变量X,Y的密度函数分别为 204.解:205.显然,当 时,当 时(图形见上)206.当 时(图形见右),zxyo1由 得:207.例3、设二维随机变量(X,Y)在矩形 上服从均匀分布,试求边长为 X 和 Y 的矩形面积 S 的密度函数。解:因为矩形的面积为2,(X,Y)的联合密度为:208.当 时,当 时,当 时,yxo21s设 S 的分布函数为曲线 与矩形 G 交于点 ;位于曲线 G 上方的满足 ,位于曲线 G 下方的满足 ,于是:209.210.卷积公式:设随机变量X与Y相互独立,其密度函数分别为 则其和分布X+Y的密度函数为211.例4、X,Y 是两个相互独立同服从标准正态分布的随机变量,求 的概率密度函数。解:X、Y 的密度为212.由卷积公式得:由 的密度可见,213.下面,我们再研究商的分布。例5、设 X、Y 分别表示两个不同电子器件的寿命(以时计),并设 X 和 Y 相互独立,且服从同一分布,其概率密度为求 的概率密度。214.解:当 时D1000yxxy1000215.所以10001000D当 时216.所以当 时 是不可能事件;综上所述,217.4.1.1 数学期望的定义定义4.1:如果离散型随机变量X 的分布律是 ,若级数 收敛,则称随机变量 X 的数学期望存在,且称级数 的和为 X 的数学期望,并记为EX,有时也称 EX 为 X 的均值。4.1随机变量的数学期望218.对连续型随机变量 X 的数学期望类似的可定义如下:定义4.2:如果连续型随机变量X具有密度函数 f(x),积分 收敛,则称 X 的数学期望存在,否则称X的数学期望不存在。若X 的数学期望存在,称积分值 为 X 的数学期望,也记为 EX。219.例1:A、B两台自动机床生产同一种标准件,生产1000只产品所出的次品数各用X、Y 表示,经过一段时间考察,X、Y 的分布律分别为:两个定义中的划线位置,当此条件满足时,才称数学期望存在。注意几何意义:表示随机变量取值的平均水平。(加权意- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 PPT 课件
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文