回归分析课程教案.ppt
《回归分析课程教案.ppt》由会员分享,可在线阅读,更多相关《回归分析课程教案.ppt(53页珍藏版)》请在咨信网上搜索。
1、数学建模与数学实验数学建模与数学实验后勤工程学院数学教研室回归分析回归分析3/24/20241实验目的实验目的实验内容实验内容2、掌握用数学软件求解回归分析问题。、掌握用数学软件求解回归分析问题。1、直观了解回归分析基本内容。、直观了解回归分析基本内容。1 1、回归分析的基本理论回归分析的基本理论。3 3、实验作业。实验作业。2、用数学软件求解回归分析问题。用数学软件求解回归分析问题。3/24/20242一元线性回归一元线性回归多元线性回归多元线性回归回归分析回归分析数数学学模模型型及及定定义义*模模型型参参数数估估计计*检检验验、预预测测与与控控制制可可线线性性化化的的一一元元非非线线性性回
2、回归归(曲曲线线回回归归)数数学学模模型型及及定定义义*模模型型参参数数估估计计*多多元元线线性性回回归归中中的的检检验验与与预预测测逐逐步步回回归归分分析析3/24/20243一、数学模型一、数学模型例例1 测16名成年女子的身高与腿长所得数据如下:以身高x为横坐标,以腿长y为纵坐标将这些数据点(xI,yi)在平面直角坐标系上标出.散点图解答3/24/20244一元线性回归分析的主要任务主要任务是:返回返回3/24/20245二、模型参数估计二、模型参数估计1、回归系数的最小二乘估计、回归系数的最小二乘估计3/24/202463/24/20247返回返回3/24/20248三、检验、预测与控
3、制三、检验、预测与控制1、回归方程的显著性检验、回归方程的显著性检验3/24/20249()F检验法检验法()t检验法检验法3/24/202410()r检验法检验法3/24/2024112、回归系数的置信区间、回归系数的置信区间3/24/2024123、预测与控制、预测与控制(1)预测)预测3/24/202413(2)控制)控制返回返回3/24/202414四、可线性化的一元非线性回归四、可线性化的一元非线性回归(曲线回归)(曲线回归)例例2出钢时所用的盛钢水的钢包,由于钢水对耐火材料的侵蚀,容积不断增大.我们希望知道使用次数与增大的容积之间的关 系.对一钢包作试验,测得的数据列于下表:解答3
4、/24/202415散点图此即非线性回归非线性回归或曲线回归曲线回归问题(需要配曲线)配曲线的一般方法是:配曲线的一般方法是:3/24/202416通常选择的六类曲线如下:返回返回3/24/202417一、数学模型及定义一、数学模型及定义返回返回3/24/202418二、模型参数估计二、模型参数估计3/24/202419返回返回3/24/202420三、多元线性回归中的检验与预测三、多元线性回归中的检验与预测()F检验法检验法()r检验法检验法(残差平方和)残差平方和)3/24/2024212、预测、预测(1)点预测)点预测(2)区间预测)区间预测返回返回3/24/202422四、逐步回归分析
5、四、逐步回归分析(4)“有进有出”的逐步回归分析。(1)从所有可能的因子(变量)组合的回归方程中选择最优者;(2)从包含全部变量的回归方程中逐次剔除不显著因子;(3)从一个变量开始,把变量逐个引入方程;选择“最优”的回归方程有以下几种方法:“最最优优”的的回回归归方方程程就是包含所有对Y有影响的变量,而不包含对Y影响不显著的变量回归方程。以第四种方法,即逐步回归分析法逐步回归分析法在筛选变量方面较为理想.3/24/202423 这个过程反复进行,直至既无不显著的变量从回归方程中剔除,又无显著变量可引入回归方程时为止。逐步回归分析法逐步回归分析法的思想:从一个自变量开始,视自变量Y作用的显著程度
6、,从大到地依次逐个引入回归方程。当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉。引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步。对于每一步都要进行Y值检验,以确保每次引入新的显著性变量前回归方程中只包含对Y作用显著的变量。返回返回3/24/202424统计工具箱中的回归分析命令统计工具箱中的回归分析命令1、多元线性回归、多元线性回归2、多项式回归、多项式回归3、非线性回归、非线性回归4、逐步回归、逐步回归返回返回3/24/202425多元线性回归多元线性回归 b=regress(Y,X)1、确定回归系数的点估计值:确定回归系数的点估计值:3/24/2024263、画
7、出残差及其置信区间:画出残差及其置信区间:rcoplot(r,rint)2、求回归系数的点估计和区间估计、并检验回归模型:求回归系数的点估计和区间估计、并检验回归模型:b,bint,r,rint,stats=regress(Y,X,alpha)回归系数的区间估计残差用于检验回归模型的统计量,有三个数值:相关系数r2、F值、与F对应的概率p置信区间 显著性水平(缺省时为0.05)3/24/202427例例1 解:解:1、输入数据:输入数据:x=143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164;X=ones(16,1)x
8、;Y=88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102;2、回归分析及检验:回归分析及检验:b,bint,r,rint,stats=regress(Y,X)b,bint,statsTo MATLAB(liti11)题目3/24/2024283、残差分析,作残差图:、残差分析,作残差图:rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.073+0.7194x能较好的符合原始数据,而第二个数据可视为异常点.4、预测及作图:、预测及作图:z=b(1)+b
9、(2)*x plot(x,Y,k+,x,z,r)返回返回To MATLAB(liti12)3/24/202429多多项项式式回回归归(一)一元多项式回归一)一元多项式回归(1)确定多项式系数的命令:p,S=polyfit(x,y,m)(2)一元多项式回归命令:polytool(x,y,m)1、回归:、回归:y=a1xm+a2xm-1+amx+am+12、预测和预测误差估计:、预测和预测误差估计:(1)Y=polyval(p,x)求polyfit所得的回归多项式在x处 的预 测值Y;(2)Y,DELTA=polyconf(p,x,S,alpha)求polyfit所得 的回归多项式在x处的预测值Y
10、及预测值的显著性为1-alpha的置信区间Y DELTA;alpha缺省时为0.5.3/24/202430法一法一 直接作二次多项式回归:直接作二次多项式回归:t=1/30:1/30:14/30;s=11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48;p,S=polyfit(t,s,2)To MATLAB(liti21)得回归模型为:3/24/202431法二法二化为多元线性回归:化为多元线性回归:t=1/30:1/30:14/30;s=11.86 15.67 20.60
11、26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48;T=ones(14,1)t(t.2);b,bint,r,rint,stats=regress(s,T);b,statsTo MATLAB(liti22)得回归模型为:Y=polyconf(p,t,S)plot(t,s,k+,t,Y,r)预测及作图预测及作图To MATLAB(liti23)3/24/202432(二)多元二项式回归(二)多元二项式回归命令:rstool(x,y,model,alpha)nm矩阵显著性水平(缺省时为0.05)n维列向量3/24/
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 回归 分析 课程 教案
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。