概率论及数理统计公式整理(超全版).docx
《概率论及数理统计公式整理(超全版).docx》由会员分享,可在线阅读,更多相关《概率论及数理统计公式整理(超全版).docx(49页珍藏版)》请在咨信网上搜索。
1、(5)基本事件、样 本 空间 和 事件第 1 章 随机事件及其概率m!(1)排列 组 合An =从 m 个人中挑出n 个人进行排列的可能数。m (m n)!m!C n =从 m 个人中挑出n 个人进行组合的可能数。m n!(m n)!公式加法原理(两种方法均能完成此事): m+n某件事由两种方法来完成, 第一种方法可由 m 种方法完成, 第二种方法可由 n 种(2)加方法来完成,则这件事可由 m+n 种方法来完成。法 和 乘乘法原理(两个步骤分别不能完成这件事): mn法原理某件事由两个步骤来完成, 第一个步骤可由 m 种方法完成, 第二个步骤可由 n 种方法来完成,则这件事可由 mn 种方法
2、来完成。(3)一些 常 见排列(4)随机 试 验和 随 机重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题如果一个试验在相同条件下可以重复进行, 而每次试验的可能结果不止一个, 但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:每进行一次试验,必须发生且只能发生这一组中的一个事件;任何事件,都是由这一组中的部分事件组成的。这样一组事件中的每一个事件称为基本事件,用 来表示。基本事件的全体,称为试验的样本空间,用 表示。一个事件就是由 中的部分点(基本事件
3、)组成的集合。通常用大写字母 A,B, C, 表示事件,它们是 的子集。 为必然事件, 为不可能事件。不可能事件()的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件()的概率为 1,而概率为 1 的事件也不一定是必然事件。(6)事关系:件 的 关系 与 运算如果事件 A 组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):A B如果同时有 A B, B A, 则称事件 A 与事件 B 等价, 或称 A 等于B: A=B。A、 B 中至少有一个发生的事件: AU B,或者 A+B。属于 A 而不属于 B 的部分所构成的事件,称为 A 与B 的差,记为 A-B,也可表示
4、为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。A、B 同时发生: An B,或者 AB。An B=,则表示 A 与 B 不可能同时发生,称 事件 A 与事件B 互不相容或者互斥。基本事件是互不相容的。 -A 称为事件A 的逆事件, 或称 A 的对立事件, 记为 A 。它表示 A 不发生的事件。 An B=, A U B=互斥未必对立。 常用公式: A AB AB运算:交换律: AB=BA AB=BA结合率: A(BC)=(AB)C A(BC)=(AB)C分配率: (AB) C=(AC) (BC) (AB) C=(AC) (BC)n A U Ai i德摩根率: i 1 i 1
5、 A U B A n B, A n B A U B频率: f (A)= nA 性质:n n(1)0 f (A) 1; n(2)f(S) 1, f() 0;(3)若A ,A , ,A 是两两互不相容的事,1 2 kf(A A A ) f (A ) f (A ) f (A )1 2 k n 1 n 2 n k随机波动性 和 稳定性。 频率 (波动) 概率(稳定).(7)概 率 的 公 理 化 定 义概率:设 为样本空间, A 为事件,对每一个事件A 都有一个实数 P(A), 若满足下列三个条件:1 P(A) 02 P() =13 对于两两互不相容的事件A1, A2 ,有 i1P(Ai )常称为可列
6、(完全)可加性。则称 P(A)为事件 A 的概率。概率性质:(1)0 P(A) 1,P(S) 1,P() 0;(2)若A ,A , ,A 是两两互不相容事件,则有1 2 nP(A1A2A ) P(A ) P(A ) n 1 2 P(A ). (有限可加性)n(3)设A,B 为两个事件,且 A B,则P(A) P(B),P(B A) P(B) P(A).(4) 设 A是A的对立事件,则 P(A) 1 P(A).(5)(加法公式) 对于任意两事件 A,B ,有P(A B) P(A) P(B) P(AB).P(AAA ) P(A ) P(A ) P(A ) P(A A ) P(A A ) P(A A
7、 ) P(A A A ).123 1 2 3 1 2 2 3 1 3 1 2 3P(AAA ) n P(A ) P(A A ) P(A A A ) (1)n1P(A A A ).12n i i j i j k 1 2 ni 1 1i jn 1i jk n1 , , 2 P( ) P( ) P( ) 1 。1 2 n 1 2 n n设任一事件A ,它是由 , 组成的,则有(8)古典概型P(A) = ( )U ( )U 1U(2 ) =P(m)( ) P( ) P( )1 2 m 1 2 mm A所包含的基本事件数 n 基本事件总数(9)几 何概型(10) 加 法公式(11) 减 法公式若随机试验
8、的结果为无限不可数并且每个结果出现的可能性均匀, 同时样本空间 中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件 A, P(A) L(A) 。其中 L 为几何度量(长度、面积、体积)。 L()P(A+B)=P(A)+P(B)-P(AB)当 P(AB) 0 时, P(A+B)=P(A)+P(B)P(A-B)=P(A)-P(AB)当 B A 时, P(A-B)=P(A)-P(B) 当 A=时, P( B)=1- P(B)定义 设 A、B 是两个事件,且 P(A)0,则称P(AB) 为事件 A 发生条件下,事件 B P(A)发生的条件概率,记为 P(B /A) P(
9、AB) 。(12) 条件概率P(A)条件概率是概率的一种,所有概率的性质都适合于条件概率。P (B | A) 0, P (S | A) 1,若 B ,B 两两互不相容1 2P(B B |A) P(B |A) P(B |A) P(B B |A)1 2 1 2 1 2乘法公式: P(AB) P(B / A)P(A)P ( B | A) P (B | A)i ii 1 i 1(13) 乘法公式更一般地,对事件 A, A ,A ,若 P(A A A )0,则有1 2 n 1 2 n- 1P(A A12 A )n P(A )P(A12 | A )P(A13 | A A )12 P(An | A A12
10、An 1) 。两个事件的独立性(14) 独立性设事件A 、 B 满足P(AB) P(A)P(B) ,则称事件A 、 B 是相互独立的。 若事件A 、 B 相互独立,且P(A) 0 ,则有P(AB) P(A)P(B)P(B | A) P(B)P(A) P(A)若事件A 、 B 相互独立,则A 与B 、 A 与B 、 A 与B 也都相互独立。 必然事件 和不可能事件 与任何事件都相互独立。 与任何事件都互斥。多个事件的独立性设 ABC 是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A); 并且同时满足 P(ABC)=P(A
11、)P(B)P(C) 那么 A、B、C 相互独立。对于 n 个事件类似。若事件 A , A , , A (n 2)相互独立 , 则其中任意k (2 k n)个事件也相互独立.1 2 n若 n 个事件 A , A , ,A (n 2)相互独立,则将 A , A , , A 中任意多个事件换成1 2 n 1 2 n它们的对立事件,所得的 n 个事件仍相互独立 .设事件 B1,B2, ,Bn 满足(15) 全概公式1B1,B2, ,Bn 两两互不相容, P(Bi ) 0(i = 1,2, ,n),n2 B = S ,ii=1则有 P(A) = P(B1)P(A | B1)+ P(B2)P(A | B2
12、)+ + P(Bn )P(A | Bn )。设事件B1, B2, Bn及A 满足1 B1, B2, B n两两互不相容, P(Bi) 0, i = 1, 2, n,A 仁Un Bii=1 ,2P(A) 0,则 P(B /A) = P(ABi ) = P(Bi )P(A /Bi ) , i =1, 2, n 。(16) 贝 叶 斯 公式 P(B )P(A /B )j ji P(A) nj=1此公式即为贝叶斯公式。P(B ), ( i = 1, 2, , n ), 通常叫先验概率。 P(B /A), (i =1, 2, , n ),i i通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出
13、了“由果朔因”的推断。我们作了n 次试验,且满足令 每次试验只有两种可能结果, A 发生或A 不发生;令 n 次试验是重复进行的,即A 发生的概率每次均一样;令 每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与否是互不影响的。(17) 伯 努 利 概型这种试验称为伯努利概型,或称为n 重伯努利试验。用p 表示每次试验A 发生的概率, 则A 发生的概率为1 p = q,用 Pn (k) 表示n重伯努利试验中A 出现k(0 k n)次的概率,Pn (k) = C k p k q nk k = 0,1,2, ,nn, 。第二章 随机变量及其散布设离散型随机变量X 的可能取值为 X
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率 论及 数理统计 公式 整理 超全版
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【鱼**】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【鱼**】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。