变换的操作A.doc
《变换的操作A.doc》由会员分享,可在线阅读,更多相关《变换的操作A.doc(4页珍藏版)》请在咨信网上搜索。
十七 变换和操作(A) 年级 班 姓名 得分 一、填空题 1. 黑板上写着8,9,10,11,12,13,14七个数,每次任意擦去两个数,再写上这两个数的和减1.例如,擦掉9和13,要写上21.经过几次后,黑板上就会只剩下一个数,这个数是_____. 2. 口袋里装有99张小纸片,上面分别写着1~99.从袋中任意摸出若干张小纸片,然后算出这些纸片上各数的和,再将这个和的后两位数写在一张新纸片上放入袋中.经过若干次这样的操作后,袋中还剩下一张纸片,这张纸片上的数是_____. 3. 用1~10十个数随意排成一排.如果相邻两个数中,前面的大于后面的,就将它们变换位置.如此操作直到前面的数都小于后面的数为止.已知10在这列数中的第6位,那么最少要实行_____次交换.最多要实行_____次交换. 4. 一个自然数,把它的各位数字加起来得到一个新数,称为一次变换,例如自然数5636,各位数字之和为5+6+3+6=20,对20再作这样的变换得2+0=2.可以证明进行这种变换的最后结果是将这个自然数,变成一个一位数. 对数123456789101112…272829作连续变换,最终得到的一位数是_____. 5. 5个自然数和为100,对这5个自然数进行如下变换,找出一个最小数加上2,找出一个最大数减2.连续进行这种变换,直至5个数不发生变化为止,最后的5个数可能是_____. 6. 在黑板上写两个不同的自然数,擦去较大数,换成这两个数的差,我们称之为一次变换.比如(15,40),40-15=25,擦去40,写上25,两个数变成(15,25),对得到的两个数仍然可以继续作这样的变换,直到两个数变得相同为止,比如对(15,40)作这样的连续变换: (15,40) (15,25) (15,10) (5,10) (5,5). 对(1024,111…1)作这样的连续变换,最后得到的两个相同的 20个1 数是_____. 7. 在一块长黑板上写着450位数123456789123456789…(将123456789重复50次).删去这个数中所有位于奇数位上的数字:再删去所得的数中所有位于奇数位上的数字:再删去…,并如此一直删下去.最后删去的数字是_____. 8. 将100以内的质数从小到大排成一个数字串,依次完成以下五项工作叫做一次操作: ① 将左边第一个数码移到数字串的最右边; ② 从左到右两位一节组成若干这两位数; ③ 划去这些两位数中的合数; ④ 所剩的两位质数中有相同者,保留左边的一个,其余划去; ⑤ 所余的两位质数保持数码次序又组成一个新的数字串。 经过1997次操作,所得的数字串是_____. 9. 一个三角形全涂上黑色,每次进行一次操作,即把全黑三角形分成四个全等的小三角形,中间的小正三角形涂上白色,经过5次操作后,黑色部分是整个三角形的_____. (1) (2) 10. 口袋里装着分别写有1,2,3,…,135的红色卡片各一 张,从口袋里任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回口袋内.经过若干次这样的操作后,口袋内还剩下两张红色卡片和一张黄色卡片.已知这两张红色卡片上写的数分别是19和97.那么这张黄色卡片上写的数是_____. 二、解答题 11.请说明例1中,对1980的连续变换中一定会出现重复.对其它的数作连续变换是不是也会如此? 12. 将33方格纸的每一个方格添上奇数或偶数,然后进行如下操作:将每个方格里的数换成与它有公共边的几个方格里的数的和,问是否可以经过一定次数的操作,使得所有九个方格里的数都变成偶数?如果可以,需要几次? 13. 在左下图中,对任意相邻的上下或左右两格中的数字同时加1或减1算作一次操作,经过若干次操作后变为下图.问:下图A格中的数字是几?为什么? 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 A 1 1 1 14. 在19971997的方形棋盘上每格都装有一盏灯和一个按钮,按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变不亮,不亮变亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮? ———————————————答 案—————————————————————— 1. 71 所剩之数等于原来的七个数之和减6,故这个数是(8+9+10+11+12+13+14)-6=71. 2. 50 每次操作都不改变袋中所有数之和除以100的余数,所以最后一张纸片上的数等于1~99的和除以100的余数. (1+2+…+99)100=100 =4950100 =49100+50 故这张纸片上的数是50. 3. 4次;40次. 当排列顺序为1,2,3,4,5,10,6,7,8,9时,交换次数最少,需交换4次;当排列顺序为9,8,7,6,5,10,4,3,2,1时,交换次数最多,需交换40次. 4. 3 一个整数被9除的余数等于它的各位数字之和被9除的余数,如果这个整数不是9的倍数,就可以根据这一点来确定题目要求的一位数. (1+2+…+9)3+110+210被9除余3,可见最终得到的一位数是3. 5. 20,20,20,20,20,或19,20,20,20,21 或19,19,20,21, 21. 仿例2,5个数的差距会越来越小,最后最大与最小数最多差2.最终的5个数可能是20,20,20,20,20,或者19,20,20,20,21或19,19,20,21,21. 6. 1 变换中的两个数,它们的最大公约数始终末变,是后得到的两个相同的数即为它们的最大公约数.因为1024=210,而11…1 20个1 没有质因子2,它们是互质的.所以最后得到的两个相同的数是1. 7. 4 事实上,在第一次删节之后.留下的皆为原数中处于偶数位 置上的数;在第二次删节之后,留下的数在原数中所处的位置可被4整除;如此等等.于是在第八次删节之后,原数中只留下处于第28k=256k号位置上的数,这样的数在所给的450位数中只有一个,即第256位数.由于256=928+4,所以该数处于第29组“123456789”中的第4个位置上.即为4. 8. 1731 第1次操作得数字串711131131737; 第2次操作得数字串11133173; 第3次操作得数字串111731; 第4次操作得数字串1173; 第5次操作得数字串1731第6次操作得数字串7311; 第7次操作得数字串3117; 第8次操作得数字串1173; 以下以4为周期循环,即4k次操作均为1173. 1996=4499,所以第1996次操作得数字串1173,因此第1997次操作得数字串1731. 9. 每一次黑三角形个数为整个的,所以5次变换为= 10. 3 卡片上的数字之和除以17的余数始终不变. (1+2+3+…+135)17=918017=540. (19+97)17=11617=6……14, 因为黄色卡片上的数都小于17,所以黄色卡片上的数是17-14=3. 11. 对1980的连续变换中,每个数都不大于1980+1991=3971,所以在3971步之内必定会出现重复,对其它的数作连续变换也会如此. 12. 如图,用字母a,b,c,d,e,f,g,h,I代表9个方格内的数字,0代表偶数. a b c b+d a+e+c b+f g+c b+h a+i d e f a+e+g d+b+h+f c+e+i d+f 0 d+f g h i d+h g+e+i h+f a+i b+h g+c d+f+b+h g+c+a+i b+h+d+f 0 0 0 g+c+a+i 0 g+c+a+i 0 0 0 d+f+b+h a+I+g+c b+h+d+f 0 0 0 可见经过四次操作后,所有九个方格中的数全变为偶数. 13. 每次操作都是在相邻的两格,我们将相邻的两格染上不同的颜色(如右下图),因为每次操作总是一个黑格与一个白格同时加1或减1,所以无论进行多少次操作,白格内的数字之和减去黑格内的数字之和总是常数.由原题左图知这个常数是8,再由原题右图可得(A+7)-8=8,由此解得A=9. 14. 1997次 将第一列中的每一格都按一次,则除第一列外,每格的灯都只改变一次状态,由不亮变亮.而第一列每格的灯都改变1997次状态,由不亮变亮. 如果少于1997次,则至少有一列和至少有一行没有被按过,位于这一列和这一行相交处的灯保持原状,即不亮的状态.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 变换 操作
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文