人教版·数学Ⅰ§222对数函数(1).doc
《人教版·数学Ⅰ§222对数函数(1).doc》由会员分享,可在线阅读,更多相关《人教版·数学Ⅰ§222对数函数(1).doc(5页珍藏版)》请在咨信网上搜索。
普通高中课程标准实验教科书 数学1(必修) §2.2.2对数函数(1) 教学设计 数学1第2章第2.2节(对数函数及其性质)第1课时教学设计 教材分析: 1、对数函数及其性质为必修内容,而且对数函数及其相关知识历来是高考的重点,既有中档题,又能和其它知识相结合、综合性较强、考查也比较深刻。 2、对数函数是函数中一类重要的基本初等函数,它是在学生已经学过指数函数、对数与对数运算基础上引入的,是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。 3、对数函数是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。 4、对数函数及其性质的学习使学生的知识体系更加完整、系统,同时又是对数和函数知识的拓展与延伸。 5、学生容易忽视函数的定义域,在进行对数函数定义教学时要结合指数式强调对数函数的定义域,加强对对数函数定义域为(0,)的理解。在理解对数函数概念的基础上掌握对数函数的图像和性质是本节课的教学重点,而理解底数a的值对于函数值变化的影响是教学的一个难点,教学时要充分利用图像,数形结合,帮助学生理解。 教学设计: 教学目标: 知识与技能: 理解对数函数的概念, 并通过对数函数的图象分析得出函数性质,会求解对数函数定义域及比较对数值大小; 过程与方法: 通过对对数函数内容的学习, 渗透数形结合的数学思想和经历从特殊到一般的过程; 情感、态度与价值观: 在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力。 教学重点:对数函数的定义、图象和性质。 教学难点:底数a大小对对数函数图象与性质的影响。 教学过程: 温故知新 对数函数 作图察质 问题探究 图像性质 学以致用 趁热打铁 画龙点睛 巩固作业 由“细胞分裂”引入 对数函数定义 描点、计算器、对称 底数a对图像的影响 分析归纳函数性质 例题分析解答 习题训练巩固 知识归纳总结 相关课后作业 一、 引入课题 1.(知识方法准备) 学习指数函数时,对其性质研究了哪些内容,采取怎样的方法? 设计意图:结合指数函数,让学生熟知对于函数性质的研究内容,熟练研究函数性质的方法——借助图象研究性质. 对数的定义及其对底数的限制. 设计意图:为讲解对数函数时对底数的限制做准备. 2.(引例)教材P70: 处理建议:在教学时,可以让学生利用计算器填写下表: 碳14的含量P … 0.5 0.3 0.1 0.01 0.001 … 生物死亡年数t … … 然后引导学生观察上表,体会“对每一个碳14的含量P的取值,通过对应关系,生物死亡年数t都有唯一的值与之对应,从而t是P的函数”.(进而引入对数函数的概念) 二、 新课教学 (一)对数函数的概念 1.定义:函数,且叫做对数函数(logarithmic function) 其中是自变量,函数的定义域是(0,+∞). 注意: 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:, 都不是对数函数,而只能称其为对数型函数. 对数函数对底数的限制:,且. (二)对数函数的图象和性质 问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗? 研究方法:画出函数的图象,结合图象研究函数的性质. 研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 探索研究: 操作:在同一坐标系中画出下列对数函数的图象;(可用描点法,也可借助科学计算器或计算机) (1) (2) (3) (4) (5) 引申:只画第一个函数图象, 能否马上得到第二个函数图象? 利用换底公式,可以得到 自变量相同, 函数值相反,故函数图象关于x轴对称.(从特殊到一般,总结规律) 探讨:类比指数函数图象和性质的研究,研究对数函数的性质并填写如下表格: 图象特征 函数性质 函数图象都在y轴右侧 函数的定义域为(0,+∞) 图象关于原点和y轴不对称 非奇非偶函数 向y轴正负方向无限延伸 函数的值域为R 函数图象都过定点(1,1) 自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数 减函数 第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0 第二象限的图象纵坐标都小于0 第二象限的图象纵坐标都小于0 图象特征部分:由学生讨论、交流,教师引导总结出函数图象的特征,完成表单. 图象性质部分:由学生仿造指数函数性质完成,教师适当启发、引导,完成表单. 思考底数是如何影响函数的.(学生独立思考或小范围内讨论,师生共同总结) 规律总结:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大. (设计意图)⑴通过图象的对比,使图象直观、准确,便于学生理解图象之间的共同点和不同点。 ⑵通过问和分析,开拓学生的思路,使学生对问题的讨论不拘泥于某一点上,全方位的,多层次,多角度的考察对数函数的图象和性质,使问题的解决由粗到细,由无序到有序。 ⑶符合学生的认知规律,由特殊到一般,从具体到抽象。 ⑷充分发挥学的能动性,以学生为主体,展开课堂教学。 探究活动要点:引导学生回顾需要研究函数的哪些性质,探讨对数函数的性质时强调数形结合即函数图象在研究函数性质中的作用,注意从具体到一般的思想方法的应用,渗透概括能力的培养,注意独立研究和集体讨论的结合与分配;进行课堂巡视,视情况给予个别辅导,让学生表述自己的发现,及时评价学生、补充学生回答中的不足. (三)典型例题 例1.(教材P71例7). 解:(略)(讨论分析:求对数型函数定义域的依据? → 师生共练 → 小结:真数>0) 说明:本例主要考察学生对对数函数定义中底数和定义域的限制,通过求对数函数的定义域加深对对数函数的理解,重点并非求函数的定义域,教学时不需加大此部分难度. 巩固练习:(教材P75练习2).(个体练习为主,可让学生上讲台在黑板解题,强调格式) 例2.(教材P72例8)(讨论分析:比大小的依据? → 师生共练 → 小结:利用单调性比大小) 解: (1)解法1:用图形计算器或多媒体画出对数函数的图象.在图象上,横坐标为3.4的点在横坐标为8.5的点的下方: 所以, 解法2:由函数+上是单调增函数,且3.4<8.5,所以. 解法3:直接用计算器计算得:, (2)与第(1)小题类似 (3)注:底数非常数,要分类讨论的范围. 解法1:当>1时,在(0,+∞)上是增函数,且5.1<5.9. 所以, 当1时,在(0,+∞)上是减函数,且5.1<5.9. 所以, 解法2:转化为指数函数,再由指数函数的单调性判断大小. 令 令 当>1时,在R上是增函数,且5.1<5.9 所以,<,即< 当0<<1时,在R上是减函数,且5.1>5.9 所以,<,即> 说明:本例主要考察学生利用对数函数的单调性“比较两个数的大小”的方法,熟悉对数函数的性质,渗透应用函数的观点解决问题的思想方法. 注意:本例应着重强调利用对数函数的单调性比较两个对数值的大小的方法,注重方法的探究,先从数形结合的方法入手再引申出利用函数单调性的方法,同时说明还可以用计算器计算比较大小的方法,强调知识的灵活运用,规范解题格式. 巩固练习:(教材P73练习3).(个体练习为主,可让学生上讲台在黑板解题,强调格式) 三、 归纳小结,强化思想 本节课的目的要求是掌握对数函数的概念、图象和性质.在理解对数函数的定义的基础上,掌握对数函数的图象和性质是本节课的重点. (1) 提问学生本节课学会了什么知识; (2) 总结本节课主要学习内容: ① 对数函数的概念; ② 对数函数的图象及其性质; ③ 利用性质求函数的定义域; ④利用性质比较两个对数值的大小小. 四、 作业布置 1. 必做题:教材P74习题2.2(A组) 第7、8题. 2. 选做题:教材P74习题2.2(B组) 第4题. 3. 拓展题(选做): 1.已知函数的定义域为[-1,1],则函数的定义域为 2.求函数的值域. 3.已知<<0,按大小顺序排列m, n, 0, 1 4.已知0<<1, b>1, ab>1. 比较 (设计意图)作业按循序渐进的原则布置,既巩固本节课所学知识,又培养自觉学习的习惯,在解题能力方面也得到锻炼。 五、 板书设计 引入分析等 三.例题分析解答 课题: 一. 定义 二. 性质 例题分析解答 设计说明: 1、本节课的设计充分考虑学生获取知识时所遵循的“从特殊到一般,由浅入深,从具体到抽象,由易到难,循序渐进”的原则:例如本节课中对数函数的图象和性质的得到,就是通过与指数函数图象的类比得到,又如例题的难易逐步递增,就是遵循上述原则,符合学生的认知水平和接受能力。 2、本节课借助电脑多媒体使教师的设计问题与活动的引导密切结合,注意了充分提高学生的学习数学的兴趣,强调学生“活动”的内化,以此达到使学生有效地对当前所学知识的意义建构的目的以及与科技发展相适应,及时更新教学内容与方式,逐步渗透现代教学思想。 湖南省汉寿县第三中学 设计者:艾镇南- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 数学 222 对数 函数
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文