2017年高考全国卷I卷.doc
《2017年高考全国卷I卷.doc》由会员分享,可在线阅读,更多相关《2017年高考全国卷I卷.doc(17页珍藏版)》请在咨信网上搜索。
2017年普通高等学校招生全国统一考试 理科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A={x|x<1},B={x|},则( ) A. B. C. D. 2.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( ) A. B. C. D. 3.设有下面四个命题 :若复数满足,则; :若复数满足,则; :若复数满足,则; :若复数,则. 其中的真命题为( ) A. B. C. D. 4.记为等差数列的前项和.若,,则的公差为( ) A.1 B.2 C.4 D.8 5.函数在单调递减,且为奇函数.若,则满足的的取值范围是( ) A. B. C. D. 6.展开式中的系数为( ) A.15 B.20 C.30 D.35 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) A.10 B.12 C.14 D.16 8.右面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( ) A.A>1 000和n=n+1 B.A>1 000和n=n+2 C.A1 000和n=n+1 D.A1 000和n=n+2 9.已知曲线C1:y=cos x,C2:y=sin (2x+),则下面结论正确的是( ) A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2 B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2 C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2 D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2 10.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( ) A.16 B.14 C.12 D.10 11.设x,y,z为正数,且,则( ) A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 12.几位大学生响应国家的创业号召,开发了一款应用软件。为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推。求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂。那么该款软件的激活码是( ) A.440 B.330 C.220 D.110 二、填空题:本题共4小题,每小题5分,共20分。 13.已知向量a,b的夹角为60°,|a|=2,|b|=1,则| a +2 b |= . 14.设x,y满足约束条件,则的最小值为 . 15.已知双曲线C:(a>0,b>0)的右顶点为A,以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点。若∠MAN=60°,则C的离心率为 . 16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O。D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形。沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥。当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 . 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。 17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为 (1)求sinBsinC; (2)若6cosBcosC=1,a=3,求△ABC的周长. 18.(12分)如图,在四棱锥P-ABCD中,AB//CD,且. (1)证明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布. (1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求及的数学期望; (2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得,,其中为抽取的第个零件的尺寸,. 用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01). 附:若随机变量服从正态分布,则, ,. 20.(12分)已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上. (1)求C的方程; (2)设直线l不经过P2点且与C相交于A,B两点。若直线P2A与直线P2B的斜率的和为–1,证明:l过定点. 21.(12分)已知函数ae2x+(a﹣2) ex﹣x. (1)讨论的单调性; (2)若有两个零点,求a的取值范围. (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。 22.[选修4―4:坐标系与参数方程](10分) 在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为. (1)若a=−1,求C与l的交点坐标; (2)若C上的点到l的距离的最大值为,求a. 23.[选修4—5:不等式选讲](10分) 已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│. (1)当a=1时,求不等式f(x)≥g(x)的解集; (2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围. 2017年普通高等学校招生全国统一考试 理科数学答案解析 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A={x|x<1},B={x|},则( ) A. B. C. D. 【考点】:集合的简单运算,指数函数 【思路】:利用指数函数的性质可以将集合B求解出来,之后利用集合的计算求解即可。 【解析】:由,解得,故而,故选A。 2.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( ) A. B. C. D. 【考点】:几何概型 【思路】:几何概型的面积问题,。 【解析】:,故而选B。 3.设有下面四个命题 :若复数满足,则; :若复数满足,则; :若复数满足,则; :若复数,则. 其中的真命题为( ) A. B. C. D. 【考点】:复数,简易逻辑 【思路】:将四个命题中的复数分别用基本形式假设即可。 【解析】::不妨设,真命题; :不妨设,假命题; :不妨设,此时明显不一定满足,假命题。 :不妨设.,真命题。 故而选B。 4.记为等差数列的前项和.若,,则的公差为( ) A.1 B.2 C.4 D.8 【考点】:等差数列,难度较小。 【思路】:将求和公式化简即可得到公差。 【解析】:,,作差 故而选C。 5.函数在单调递减,且为奇函数.若,则满足的的取值范围是( ) A. B. C. D. 【考点】:函数不等式,函数的单调性。 【思路】:奇函数左右两侧单调性相同,根据奇函数的性质求解,利用单调性代入不等式即可。 【解析】:故而选D。 6.展开式中的系数为( ) A.15 B.20 C.30 D.35 【考点】:二项式定理。 【思路】:将的通项求解出来即可。 【解析】:可得整体的通项、,,,故而可得的系数为为30,故选C。 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) A.10 B.12 C.14 D.16 【考点】:立体图形的三视图,立体图形的表面积。 【思路】:将三视图还原即可。 【解析】:将三视图还原可得右图图形,故而多面体有两个面是梯形,此时可得,故而选B。 8.右面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( ) A.A>1 000和n=n+1 B.A>1 000和n=n+2 C.A1 000和n=n+1 D.A1 000和n=n+2 【考点】:程序框图。 【思路】:此题的难点在于考察点的不同,考察判断框和循环系数。根据判断条件可得为当型结构,故而判断框中应该是A1 000,又题目要求为最小偶数,故而循环系数当为n=n+2。 【解析】:选D。 9.已知曲线C1:y=cos x,C2:y=sin (2x+),则下面结论正确的是( ) A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2 B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2 C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2 D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2 【考点】:三角函数的变换。 【思路】:熟悉两种常见的三角函数变换,先变周期和先变相位不一致。 先变周期: 先变相位: 【解析】:选D。 10.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( ) A.16 B.14 C.12 D.10 【考点】:抛物线与直线的位置关系。 【思路】:由题意可得两条直线的斜率一定存在且不为0,分别假设为和-,故而可得,联立,假设,故而根据韦达定理可得,此时,同理可得,故而,当且仅当时取等号。 【解析】:选A。 11.设xyz为正数,且,则( ) A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 【考点】:指对运算与不等式,计算量较大。 【思路】:将指数形式化简即可求出三个变量,不妨设。将三者代入答案即可解答。 【解析】:分别可求得,分别对分母乘以30可得, 故而可得,故而选D。 12.几位大学生响应国家的创业号召,开发了一款应用软件。为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推。求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂。那么该款软件的激活码是( ) A.440 B.330 C.220 D.110 【考点】:行列式(杨辉三角)求和问题,计算量较大。 【思路】:将已知的数列列举成行列式的形式, 第一行,1个数,求和为 第二行,2个数,求和为 第三行,3个数,求和为 第四行,4个数,求和为 第五行,5个数,求和为 故而可得,第n行,n个数,求和为,因此前n行,一共有个数,求和为 【解析】:根据上面的分析,我们可以类推得到, 前14行,有105个数,求和为,当时,求和为 前20行,有210个数,求和为,当时,求和为 前25行,有225个数,求和为,当时,求和为 前29行,有435个数,求和为,当时,求和为,故而选A。 二、填空题:本题共4小题,每小题5分,共20分。 13.已知向量a,b的夹角为60°,|a|=2,|b|=1,则| a +2 b |= . 【考点】:向量的模长。 【思路】:牢记求解模长问题利用平方的思路,直接将所求的内容进行平方即可。 【解析】:,故而模长为。 14.设x,y满足约束条件,则的最小值为 . 【考点】:简单的线性规划。 【思路】:根据约束条件,画出可行域即可。 【解析】:如图所示,可行域为阴影部分,令为初始直线,当向上平移时,逐渐变小,故而在点处取到最小值-5。 15.已知双曲线C:(a>0,b>0)的右顶点为A,以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点。若∠MAN=60°,则C的离心率为 . 【考点】:圆锥曲线离心率问题。 【思路】:利用角度计算可得答案。 【解析】:如图所示,过点A作渐近线的垂线AB,由,又,故而 ,解得。 16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O。D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形。沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥。当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 . 【考点】:立体几何体积计算,函数与导数综合。 【思路】:根据题意可得△DBC,△ECA,△FAB分别全等,故而可得三棱锥是正三棱锥,斜高即为三个三角形的高,即为,高为(右图)。不妨设三角形的边长为,此时在左图中,,故而正三棱锥的高 ,此时即可计算体积。 【解析】:根据体积公式可得,利用函数性质可得,假设,故而当时取最大值cm3。 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。 17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为 (1)求sinBsinC; (2)若6cosBcosC=1,a=3,求△ABC的周长. 【考点】:解三角形。 【思路】:根据三角形面积公式可以求得第一问,第二问直接利用余弦定理求解即可。 【解析】:(1)由题意可得,化简可得,根据正弦定理化简可得:。 (2)由,因此可得,将之代入中可得:,化简可得,利用正弦定理可得,同理可得,故而三角形的周长为。 18.(12分)如图,在四棱锥P-ABCD中,AB//CD,且. (1)证明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值. 【考点】:立体几何,空间向量。 【思路】:(1)利用线面垂直的性质即可求得。(2)建立空间直角坐标系即可 【解析】:(1),又,PA、PD都在平面PAD内,故而可得。又AB在平面PAB内,故而平面PAB⊥平面PAD。 (2)不妨设,以AD中点O为原点,OA为x轴,OP为z轴建立平面直角坐标系。故而可得各点坐标:,因此可得,假设平面的法向量,平面的法向量,故而可得,即,同理可得,即。因此法向量的夹角余弦值:。很明显,这是一个钝角,故而可得余弦为。 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布. (1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求及的数学期望; (2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得,,其中为抽取的第个零件的尺寸,. 用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01). 附:若随机变量服从正态分布,则, ,. 【考点】:统计与概率。 【思路】:(1)这是典型的二项分布,利用正态分布的性质计算即可。(2)考察正态分布,代入运算即可。 【解析】:(1) 由题意可得,X满足二项分布,因此可得 (2) 由(1)可得,属于小概率事件,故而如果出现的零件,需要进行检查。 由题意可得,故而在范围外存在9.22这一个数据,因此需要进行检查。此时:, 。 20.(12分)已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上. (1)求C的方程; (2)设直线l不经过P2点且与C相交于A,B两点。若直线P2A与直线P2B的斜率的和为–1, 证明:l过定点. 【考点】:圆锥曲线。 【思路】:(1)根据椭圆的对称性可以排除P1(1,1)。(2)联立方程即可,此时有两种方法联立,第一种,假设直线AB的方程,第二种假设直线P2A和P2B。 【解析】:(1)根据椭圆对称性可得,P1(1,1)P4(1,)不可能同时在椭圆上,P3(–1,),P4(1,)一定同时在椭圆上,因此可得椭圆经过P2(0,1),P3(–1,),P4(1,),代入椭圆方程可得:,故而可得椭圆的标准方程为:。 (2)由题意可得直线P2A与直线P2B的斜率一定存在,不妨设直线P2A为:,P2B为:.联立,假设,此时可得: ,此时可求得直线的斜率为: ,化简可得,此时满足。 当时,AB两点重合,不合题意。 当时,直线方程为:,即,当时,,因此直线恒过定点。 21.(12分)已知函数ae2x+(a﹣2) ex﹣x. (1)讨论的单调性; (2)若有两个零点,求a的取值范围. 【考点】:导数综合问题。 【思路】:(1)直接进行求导,分类讨论(2)函数有两个零点,故而函数不单调;根据函数单调性判断函数图像即可。 【解析】:(1)对函数进行求导可得。 当时,恒成立,故而函数恒递减 当时,,故而可得函数在上单调递减,在上单调递增。 (2)函数有两个零点,故而可得,此时函数有极小值,要使得函数有两个零点,亦即极小值小于0,故而可得,令,对函数进行求导即可得到,故而函数恒递增,又,,因此可得函数有两个零点的范围为。 (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。 22.[选修4―4:坐标系与参数方程](10分) 在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为 . (1)若a=−1,求C与l的交点坐标; (2)若C上的点到l的距离的最大值为,求a. 【考点】:参数方程。 【思路】:(1)将参数方程化为直角方程后,直接联立方程求解即可(2)将参数方程直接代入距离公式即可。 【解析】:将曲线C 的参数方程化为直角方程为,直线化为直角方程为 (1)当时,代入可得直线为,联立曲线方程可得: 解得或,故而交点为或 (2)点到直线的距离为,即:,化简可得,根据辅助角公式可得,又,解得或者。 23.[选修4—5:不等式选讲](10分) 已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│. (1)当a=1时,求不等式f(x)≥g(x)的解集; (2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围. 【考点】:不等式选讲。 【思路】:(1)将函数化简作图即可(2)将参数方程直接代入距离公式即可。 【解析】:将函数化简可得 (1) 当时,作出函数图像可得的范围在F和G点中间,联立 可得点,因此可得解集为。 (2)即在内恒成立,故而可得恒成立,根据图像可得:函数必须在之间,故而可得。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 年高 全国卷
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文