北邮概率论与数理统计离散型随机变量及其分布律2.2.doc
《北邮概率论与数理统计离散型随机变量及其分布律2.2.doc》由会员分享,可在线阅读,更多相关《北邮概率论与数理统计离散型随机变量及其分布律2.2.doc(8页珍藏版)》请在咨信网上搜索。
§2.2 离散型随机变量及其分布律 用随机变量描述随机现象,通过对随机变量的概率分布的研究达到对随机现象的统计规律性的全面把握.对于一个随机变量及任一个实数集,所有的事件的概率构成了的概率分布.显然这种方式描述概率分布是不方便的,为此我们需要寻找描述概率分布的数学工具.对于离散型随机变量,如果知道了它取各个可能值的概率,那么我们可求出任一事件的概率.因此离散型随机变量,其概率分布可通过它取各个可能值的概率来描述,这便是下面介绍的离散型随机变量的分布律.一般的随机变量的概率分布的描述及连续型随机变量的概率分布的描述将在后面两节中介绍. 2.1.1 离散型随机变量的分布律 定义2.2.1 设是离散型随机变量,其所有可能的取值为,取各个可能值的概率为 , (2.2.1) 称(2.2.1)式为的分布律. 分布律常用如下的表格表示: … … … … 由概率的定义,易得分布律具有如下基本性质: (1)非负性 ,. (2)规范性 . 以上两条基本性质是分布律必须具有的性质,也是判断某个有限或无穷数列是否能成为分布律的充要条件. 例1 掷两颗骰子,表示两颗骰子的点数之和, (1)求的分布律; (2)求点数之和至少为8的概率. 解:(1)所有可能取的值为2,3,4,5,6,7,8,9,10,11,12,并且 ,,,,,,,,,, 即得的分布律 X 2 3 4 5 6 7 8 9 10 11 12 P (2) 例2 将2个球随机地放入3个盒子中,表示某指定的盒子中球的个数,求的分布律。 解:所有可能取的值为0,1,2,并且 ,,, 即得的分布律 X 0 1 2 P 2.2.2 常用的离散型分布 下面介绍几种常用的离散型分布 (一).二项分布 在重伯努利试验中,设每次试验成功的概率为,如果记为重伯努利试验中成功的次数,则的分布律为 ,, 其中.若记,则上面分布律改写为 ,,. 容易验证 . 由于上述分布中每个概率正好是的二项展开式的一项,因此把这个分布称为二项分布.于是有下面定义. 定义 若随机变量的分布律为 ,, 其中,,则称服从参数为的二项分布,记为~. 二项分布是非常重要的离散型分布之一,这个分布的背景就是多重伯努利试验.对于具体的随机现象,若能归于多重伯努利试验模型,那么表示某种结果发生次数的随机变量就服从二项分布.比如 将一骰子掷次,点数6出现的次数服从参数为的二项分布,即~. 件产品中有件次品,从中有放回地抽检件,那么取出的次品件数服从参数为的二项分布, ~. 假设某种药的治愈率为,今有个病人服用该药,治愈人数服从二项分布. 连续发送个码字,误码率为,那么误码数服从二项分布. 二项分布中,各个概率随变化而变化,一般的规律是先随增大而增大,然后随增大而变小,有最大值.那么为何值时,这个概率最大?这个问题留给同学去解决。 在二项分布中一种最简单的二项分布便是二点分布.时的二项分布称为两点分布. 两点分布也叫做(0-1)分布, 其分布律为 . 或用表格表示为 当一个试验只有两种可能结果时就可用二点分布来描述.比如,一粒种子是否发芽,一次射击是否命中目标,抽检的一件产品是否为合格品等等. 二点分布是二项分布的特例,但反过来二项分布也可由个具有相同参数的二点分布的和得到.我们可通过二点分布和二项分布的经验背景得到此结论. 考虑重伯努利试验模型.表示重伯努利试验成功的次数.表示试验第一次成功的次数,表示第二次试验成功的次数,…,表示第次试验成功的次数.那么,并且均服从参数为的二点分布, ~.这里要注意的是,由于各次试验相互独立,因而随机变量也相互独立(随机变量的独立性概念将在下一章讨论).准确地说是:服从参数为的二项分布的随机变量可表示为个独立同分布的二点分布的随机变量之和. 例1 按规定,某种型号电子元件的使用寿命超过1500小时的为一级品.已知某一大批产品的一级品率为0.2,现从中随机地抽查20只.求20只元件中一级品只数的分布律. 解:我们将检查一只元件是否为一级品看成是一次试验,检查20只元件相当于做20重伯努利试验.从而知~,即的分布律为 . 将计算结果列表如下 为了对本题的结果有一个直观了解,我们作出上表的图形(见P35). 例2 设有80台同类型设备,各台工作是相互独立的,发生故障的概率都是0.01,且一台设备的故障能由一个人处理.考虑两种配备维修工人的方法,其一是由4人维护,每人负责20台.其二是由3人共同维护80台.试比较这两种方法在设备发生故障时不能及时维修的概率的大小.(P36) 二.泊松分布 由微积分的知识可得 从而, 这样只要,便构成一个分布律,这种分布律称为泊松分布. 定义 若随机变量的分布律为 ,, 其中,则称服从参数为的泊松分布,记为~. 泊松分布是1837年由法国数学家泊松(Poisson)首次提出的.它是一种常用的离散型分布.这种分布的实际背景没有二项分布明显,但它与二项有联系,这种联系由下面定理刻画. 定理(泊松定理) 在重伯努利试验中,事件发生的概率为(与试验次数有关),对于任意固定的,有 . 证明略(留给同学完成).上述定理中,把条件改为,结论亦成立. 该定理的一个应用便是可以近似计算二项分布的概率.由定理可以看出当很大时,有 , 由于,则当很大时,很小.故在计算二项分布的概率值时,当很大, 很小,且大小适中时,可以用参数为的泊松分布的概率值近似,即 ,(其中). 例1 某人独立地射击,假设每次射击命中的概率为0.02,射击400次,求他至少命中两次的概率. 解 设命中的次数记为,则~,所求概率为 直接计算上式很麻烦.由于这里的很大,而很小,我们可用泊松分布近似计算上面的概率. . 由泊松定理可以得到适合于用泊松分布来描述其统计规律性的随机现象所具备的背景条件.看下面例子. 例2 放射性物质在规定的一段时间内放射的粒子数是一随机变量。罗瑟福(Rutherford)和盖克(Geiger)观察和分析了放射性物质放射出的粒子个数情况.他们做了2608次观察(每次时间为7.5秒),整理如下表 粒子数 观察的频数 频率 按的泊松分布计算的概率 0 1 2 3 4 5 6 7 8 9 >9 57 203 383 525 532 408 273 139 45 27 16 0.022 0.078 0.147 0.201 0.204 0.156 0.105 0.053 0.017 0.010 0.006 0.021 0.081 0.156 0.201 0.195 0.151 0.097 0.054 0.026 0.011 0.007 合计 2608 0.999 1.000 这里是用总的放射粒子数除以总的观察次数算出来的.它的实际意义是:平均每次放射出的粒子数. 由以上的观察与分析可以看出频率与用泊松分布计算出的概率非常接近.因此可认为放射的粒子数服从泊松分布.我们也可以从理论上解释这个结果. 首先设想把体积为的某块放射性物质分割成体积相同的小块,这样每小块的体积同为,并且足够大,并假定: (1) 对每小块而言,在7.5秒内放射出一个粒子的概率都为 其中是常数(与无关,也不因小块的不同而不同),在7.5秒内放射出二个或二个以上粒子的概率为0(准确说是:当很大时,这个概率很小很小,是的高阶无穷小). (2) 各小块是否放射出粒子是相互独立的. 在此假定下,事件“在7.5秒内恰好放射出个粒子”等同于事件“在重伯努利试验中恰好成功次”,于是 上式右端与有关,它实际上是的近似值.容易理解,把物质无限细分,就能得到的精确值,也即的精确值是上式右端的极限, 由泊松定理可得 其中. 从上面例子可以总结出, 对于随机现象中用以记录某种事件发生次数的随机变量,其服从泊松分布的背景条件: (1)事件的发生(如粒子的放射)的基本速率在空间或时间上是常数;(2)事件的发生在不同空间或时间区间上相互独立;(3)事件不能同时发生。 在生物学、医学、保险业、排队论等领域中,泊松分布是一种常用的分布.例如,容器内的细菌数,铸件的疵点数,交通路口的事故数,电话呼叫次数等等. 思考题:泊松分布中的各个概率随变化而变化的规律如何?何时取得最大值? (三).超几何分布 在上一章中,我们讨论了不放回抽样模型:设有件产品,其中有件不合格,从中不放回地取件,则其中不合格品件数的分布律为 ,, 这种分布称为超几何分布,记为~. 若把“不放回地取件”改为“放回地取件”,则服从二项分布.但当远 小于时,两个分布差别不大. 思考题:超几何分布中的各个概率随变化而变化的规律如何?何时取得最大值? (四).几何分布、负二项分布 考虑独立重复试验序列,若每次试验成功的概率为,一直进行到试验成功为止,所需的试验次数是一个随机变量,它的分布律为 , 这种分布称为几何分布,记为~ 容易验证 . 例如,连续掷一骰子,直至点数6为止,则所需的抛掷次数是一个随机变量,且~. 几何分布具有一个特别的性质:无记忆性. 设想连续进行试验,一直到第次试验都未成功,从此时算起为了等到试验成功所需的试验次数还是服从几何分布,参数还是原来的参数,与无关.这就是所谓的无记忆性.用数学的语言刻画几何分布的无记忆性就是: 设~,则对任意正整数,有 , 或 . 上面等式的证明并不难,请同学们完成. 有趣的是,在取正整数值的离散分布中,只有几何分布具有无记忆性。 还是考虑独立重复试验序列,若每次试验成功的概率为,一直进行到试验成功次为止,所需的试验次数是一个随机变量,它的分布律为 , , 这种分布称为负二项分布或帕斯卡分布,记为~。易见时的负二项分布就是几何分布. 负二项式有泰勒展开式 记,由上面展开式可得 若令表示次成功之前失败的次数,那么,且的分布律为 , 可见的分布中各个概率正是负二项式(的展开式中的各项再乘.这也是负二项分布这个名称的由来. 几何分布是负二项分布的特例,那么反过来呢? 考虑独立重复试验序列模型.表示直至试验成功次为止所需的试验次数.表示试验第一次成功所需的试验次数,表示第一次试验成功后等待到第二次试验成功所需的试验次数,如此, 表示第次试验成功后等待到第次试验成功所需的试验次数.那么均服从参数为的几何分布,且.又由几何分布的无记忆性可以知道相互独立,即参数为的负二项分布的随机变量可表示为个独立同分布的几何分布的随机变量之和. - 8 -- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 离散 随机变量 及其 分布 2.2
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文