人教2011版小学数学四年级数学广角—鸡兔同笼.doc
《人教2011版小学数学四年级数学广角—鸡兔同笼.doc》由会员分享,可在线阅读,更多相关《人教2011版小学数学四年级数学广角—鸡兔同笼.doc(13页珍藏版)》请在咨信网上搜索。
数学广角—鸡兔同笼 “鸡兔同笼”问题是我国古代著名的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以提高学生的逻辑推理能力;另一方面使学生体会列表法和假设法的一般性。 由于“鸡兔同笼”问题的原题数据较大,不便于学生进行探究,所以教材以化繁为简的思想为指导,先在例1中安排一道数据较小的“鸡兔同笼”问题,让学生探索解决方法。 “阅读材料”中介绍了原来孙子提出的大胆设想。他假设去掉每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,而每只兔也就变成了“双脚兔”。这样,“独脚鸡”和“双脚兔”的脚由原来的94只,变为47只;而且,此时的鸡就变为“一个头和一只脚”,兔子则是“一个头两只脚”。由此可以知道,只要有一只“双脚兔”,脚的数量就比头的数量多1。所以,“独脚鸡”和“双脚兔”的脚的数量与它们的头的数量之差,就是兔子的只数,即47-35=12(只),鸡的数量就是35-12=23(只)。 日常生活中,“鸡兔同笼”的问题有很多的变式。教材在“做一做”中安排的日本民间流传的“龟鹤算”问题以及租船、植树等实际问题均与“鸡兔同笼”本质相同,通过让学生解决这些相关的问题,一方面让学生进一步明确“鸡兔同笼”问题的实质,了解其在生活中的广泛应用;另一方面也可以巩固学生解决这类问题的方法。 一、本单元教学内容: 鸡兔同笼问题。 二、重、难点设置: 单元重点:尝试用不同的方法解决“鸡兔同笼”问题,在尝试中提高学生的思维能力。 单元难点:弄清“鸡兔同笼”问题的结构特征和解题策略,经历多样化解题的过程,初步形成解决此类问题的一般性策略。 学情分析 “鸡兔同笼”问题集的趣味性、解题策略的多样性、应用的广泛性于一体,具有训练智能的教育功能和价值,是实施开放式教学的好题材。教材呈现两种基本的解题思路:列表法和假设法。列表法能直观反映数据的变化,学生比较容易接受,但数据较大时比较烦琐,适用性有限;假设法是一种算术方法,计算比较简便,是解决此类问题的一般策略,但算理抽象,理解有一定难度。 调查发现:对于“鸡兔同笼”问题,一部分学生在“奥数”中接触过,但多数学生还缺少独立解决本问题的策略,没有体会到解决问题策略的多样性。所以,教学中,主要采用教师适当讲解与学生自主探究相结合的教学方式,让学生在尝试、探索、交流、比较中,弄清“鸡兔同笼”问题的结构特征和解题策略,经历多样化解题的过程,初步形成解决此类问题的一般性策略。 教学要求 1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。 2.尝试用不同的方法解决“鸡兔同笼”问题,并使学生体会假设法的一般性。 3.在解决问题的过程中,提高学生的逻辑思维能力。 教学建议 1.采取直观形象的方式,让学生探讨不同的方法。 2.适当地把握教学要求。 课时安排 鸡兔同笼 1课时 鸡兔同笼 教材第103~105页的内容及第106页练习二十四。 1.了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法解决“鸡兔同笼”问题的方法,初步形成解决此类问题的一般性策略。 2.通过自主探索,合作交流,经历用不同的方法解决“鸡兔同笼”问题的过程,建构解决“鸡兔同笼”问题的数学模型。 3.体会解题策略的多样性,渗透“化繁为简、从简单情况入手”的数学思想方法。 重点:经历用不同的方法解决“鸡兔同笼”问题的策略,体会其中所蕴涵的数学思想方法。 难点:经历用不同的方法解决“鸡兔同笼”问题的过程,建构解决“鸡兔同笼”问题的数学模型。 多媒体课件。 一.情境导入 (课件出示教材第103页情景图,了解古代“鸡兔同笼”问题) 师:读情景图,你能读懂情景图中古代的“鸡兔同笼”问题吗? 生:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何”。这是出自大约一千五百年前,我国古代数学名著《孙子算经》中记载的一道数学题。 师:你明白上面的问题说的什么意思吗? 生:它的意思是说,笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。问题是鸡和兔各有几只? 师:你是怎样理解“鸡兔同笼”的? 生:就是鸡和兔在同一个笼子里。 师:今天我们就学习“鸡兔同笼”问题。(板书:数学广角—鸡兔同笼) 【设计意图:从我国古代数学趣题直接导入,让学生感受到我国数学文化历史的悠久与魅力,增强民族自豪感,激发学生探究的欲望】 二.自主探究 师:解答“鸡兔同笼”问题,可以从例1的简单问题入手分析。在简单问题中找到方法和策略,然后运用此方法和策略去解答数量较大的问题,在数学上,这叫“化繁为简、从简单情况入手”。 (课件出示教材第104页例1) 师:读题,你能找出所求问题和已知条件吗? 生1:已知笼子里有若干只鸡和兔,从上面数,有8个头,从下面数,有26只脚。 生2:所求问题是鸡和兔各有几只。 师:“从上面数,有8个头”说明了什么? 生:“从上面数,有8个头”就是说鸡和兔一共有8只。 师:“从下面数,有26只脚”说明了什么? 生:“从下面数,有26只脚”就是说鸡脚和兔脚的和是26只。 师:有了上面这些信息,谁先来猜猜,笼子里可能会有几只鸡,几只兔? (给予少许时间让学生猜测) 生:鸡和兔可能各有4只。 师:如果鸡和兔各有4只,那么一共就有2×4+4×4=24(只)脚,对吗? 生1:不对,和题意矛盾,不吻合。 生2:可能有3只兔、5只鸡。 师:如果有3只兔、5只鸡,则共有3×4+2×5=22(只)脚,符合题意吗? 生:也不符合题意。 师:看来我们解决数学问题时,不能乱猜,即便猜对,也不是解决问题的方法。当数据较大时,猜的过程就很烦琐。大家有什么好方法吗? 生:可以采取按照猜想的顺序列表进行探究。 1.列表法。 师:好,老师这里有一张表格,请大家来填一填,看看谁能又快又准确地找出答案来,开始。 鸡 8 7 6 兔 0 1 脚的只数 16 18 (学生独立完成,小组讨论,全班交流) 生: 鸡 8 7 6 5 4 3 2 1 0 兔 0 1 2 3 4 5 6 7 8 脚的只数 16 18 20 22 24 26 28 30 32 师:通过列表法,你发现了什么?你找到答案了吗? (小组讨论,全班交流) 生1:通过列表,发现鸡的只数越少,则兔的只数就越多,脚的只数也就越多;鸡的只数越多,兔的只数就越少,脚的只数也就越少。 生2:当3只鸡、5只兔时,脚的只数和正好是26只,所以笼子里有3只鸡、5只兔。 师:这个方法能帮我们解决鸡兔同笼的问题,我们把这种方法叫做列表法。(板书:列表法) 2.假设法。 师:如果假设笼子中全部是鸡,会出现什么结果?和题中给出的信息比较,发生了哪些变化? 生:假设笼子里都是鸡,则脚有8×2=16(只),这样脚比原来少了26-16=10(只)。 师:为什么会出现这样的结果呢? 生:因为把兔看成鸡,每只兔少看了4-2=2(只)脚,也就是说兔有10÷2=5(只),这样鸡就有8-5=3(只)。 师:想一想,你能把上面的想法写出算式吗? 生:兔的只数是(26-2×8)÷(4-2)=5(只),鸡的只数是8-5=3(只)。 师:如果假设全部是兔,你会解答吗? (学生尝试独立完成,小组讨论,全班交流) 生:假设全是兔,则脚有8×4=32(只),这样脚比实际多了32-26=6(只),因为把一只兔看成一只鸡,就要多出4-2=2(只)脚,所以鸡一共有6÷2=3(只),这样兔就有8-3=5(只)。 师:你能把上面的想法写出算式吗? 生:鸡的只数是(8×4-26)÷(4-2)=3(只),兔的只数是8-3=5(只)。 3.用假设法解答《孙子算经》中的“鸡兔同笼”问题。 师:你会用假设法解答《孙子算经》中的“鸡兔同笼”问题吗? (学生尝试独立完成,小组讨论,全班交流) 生1:假设全是鸡,则兔的只数是(94-35×2)÷(4-2)=12(只),鸡的只数是35-12=23(只)。 生2:假设全是兔,则鸡的只数是(35×4-94)÷(4-2)=23(只),兔的只数是35-23=12(只)。 师:你能检验你的答案是否正确吗? 生:12×4+23×2=94(条),所以正确。 答:鸡有23只,兔有12只。 三.探究汇报结果 师:通过上面的学习,你有哪些收获? 生1:“鸡兔同笼”问题可以用列表法进行分析,还可以用假设的方法解决。 生2:采用“假设法”时,先假设都是同一种事物(或都是另一种事物),再根据题中给出的条件进行修正、推算。 四.师生总结收获 师:通过本课学习,你有哪些收获? 生1:我知道了“化繁为简、从简单情况入手”的数学思想方法。 生2:用不同的方法解决“鸡兔同笼”问题的策略。 鸡 兔 同 笼 列表法: 鸡 8 7 6 5 4 3 2 1 0 兔 0 1 2 3 4 5 6 7 8 脚的只数 16 18 20 22 24 26 28 30 32 假设法: 1.假设全是鸡。 2.假设全部是兔。 兔:(26-2×8)÷(4-2)=5(只) 鸡:(8×4-26)÷(4-2)=3(只) 鸡:8-5=3(只) 兔:8-3=5(只) 1.数学教学要通过知识的学习让学生得到思维锻炼,“鸡兔同笼”问题就属于这类问题。在生活中,“鸡兔同笼”的现象很少碰到,没见过有人把鸡和兔放在一个笼子里,即使放在一个笼子里又有谁会去数它们的脚呢,直接数头不就行了?那么是不是说“鸡兔同笼”是一个完全没有价值的数学问题呢?显然不是,“鸡兔同笼”问题,是让我们在鸡、兔脚数的变化中,寻找不变的规律,并采用有效的手段来解决数学问题。 2.学生是学习的主人,在学习过程中尽可能多地为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。本节课中,主要通过创设现实情境,让学生投入到解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。 3.由于学生原有的认知背景不同,他们对解答此类问题时存在较大的差异。在教学的过程中,不能提出统一要求,要允许不同的学生采用不同的解题方法。在本节,师生共同经历了列表法、假设法等,最后比较哪种算法比较好。这样教学既提高了学生探究能力和小组合作能力,又体现了算法多样化,也让不同的学生在同一节课中都有不同程度的提高。 A类 1.鸡兔同笼,头共20个,脚共62只,鸡与兔各有多少只? 2.在一个停车场里,现有机动车41辆,汽车有4个轮子,摩托车有3个轮子,这些车共有127个轮子,那么三轮摩托车有多少辆? (考查知识点:“鸡兔同笼”;能力要求:会运用“假设法”解决生活中的简单问题) B类 1.工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元。运完这批花瓶后,工人共得4400元,则损坏了多少个? 2.彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。问:两种文化用品各买了多少套? (考查知识点:“鸡兔同笼”;能力要求:会正确计算与“鸡兔同笼”问题相类似的实际问题) 课堂作业新设计 A类: 1.兔:(62-20×2)÷(4-2)=11(只) 鸡:20-11=9(只) 2.汽车有(127-41×3)÷(4-3)=4(辆) 三轮摩托车有41-4=37(辆) B类: 1.本题中“损坏一个倒赔100元”的意思是运一个完好的花瓶与损坏1个花瓶相差100+20=120(元),即损坏1个花瓶不但得不到20元的运费,而且要赔偿100元。本题可假设250个花瓶都完好,这样可得运费20×250=5000(元)。这样比实际多得5000-4400=600(元)。就是因为有损坏的瓶子,损坏1个花瓶相差120元.现共相差600元,从而求出共损坏多少个花瓶。根据以上分析,可得损坏了600÷120=5(个)。 2.假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304-280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19-11=8(元),所以,买普通文化用品24÷8=3(套),买彩色文化用品16-3=13(套)。 教材习题 教材第106页练习二十四 1.大钢珠:14颗 小钢珠:16颗 2.大船:3条 小船:5条 3. 3个 4.一等奖:20个 二等奖:40个 5.(1)7题 (2)4题 (3)7题 6.篮球:3个 排球:3个 思考题 大和尚:25人 小和尚:75人- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教 2011 小学 数学四 年级 数学 广角
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文