第六单元测试立体几何综合测试题.doc
《第六单元测试立体几何综合测试题.doc》由会员分享,可在线阅读,更多相关《第六单元测试立体几何综合测试题.doc(5页珍藏版)》请在咨信网上搜索。
测试六 立体几何综合 一、 选择题 1、在正四面体P—ABC中,D、E、F分别是AB、BC、CA的中点,下面四个结论中不成立的是 ( C ) (A)BC//平面PDF (B)DF⊥平面PAE (C)平面PDF⊥平面ABC (D)平面PAE⊥平面ABC 2、一棱锥被平行于底面的平面所截,若截面面积与底面面积的比为1:3,则此截面把一条侧棱分成的两线段之比为 ( D ) (A)1:3 (B)1:2 (C)1: (D)1: 3、正四面体P—ABC中,M为棱AB的中点,则PA与CM所成角的余弦值为( B ) (A) (B) (C) (D) 4、正四棱锥的侧棱与底面成45°角,则侧面与地面所成二面角的正弦值是 ( D ) (A) (B) (C) (D) 5、一个三棱锥S—ABC的三条侧棱SA、SB、SC两两互相垂直,且长度分别为1,,3已知该三棱锥的四个顶点都在一个球面上,则这个球的表面积为 ( A ) (A)16π (B)32π (C)36π (D)64π 6、在棱长为a的正方体ABCD—A1B1C1D1中,P、Q是对角线A1C上的点,PQ=,则三棱锥P—BDQ的体积为 ( C ) (A) (B) (C) (D)不确定 7、若三棱锥P—ABC的三条侧棱两两垂直,且满足PA=PB=PC=1,则P到平面ABC的距离为 ( D ) (A) (B) (C) (D) 8、将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 ( C ) (A) (B)2+ (C)4+ (D) 9、PA、PB、PC是从P点出发的三条射线,每两条射线的夹角均为60°,那么直线PC与平面PAB所成角的余弦值是 ( C ) (A) (B) (C) (D) 10、正方体ABCD—A1B1C1D1中,任作平面α与对角线AC1垂直,使得α与正方体的每个面都有公共点,设得到的截面多边形的面积为S,周长为l,则……( B ) (A)S为定值,l不为定值 (B)S不为定值,l为定值 (C)S与l均为定值 (D)S与l均不为定值 二、 填空题 11、已知正四棱锥的体积为12,底面对角线的长为,则侧面与底面所成的二面角等于_______. 12、如图,已知正三棱柱ABC-A1B1C1的所有棱长都相等D是A1C1的 中点,则直线AD 与平面B1DC所成角的正弦值为 . A C B C1 B1 A1 P 13、如图,在直三棱柱ABC-A1B1C1中,底面为直角三角形,ÐACB=90°,AC=6,BC=CC1=,P是BC1上一动点,则CP+PA1的最小值是_5______. 14、已知平面和平面交于直线,P是空间一点,PA⊥,垂足为A,PB⊥,垂足为B,且PA=1,PB=2,若点A在内的射影与点B在内的射影重合,则点P到的距离为 . 15、若三角形内切圆半径为r,三边长为a,b,c,则三角形的面积S= ,根据类比思想,若四面体内切球半径为R,四个面的面积为S1,S2,S3,S4,则四面体的体积V= . 16、四面体ABCD中,有如下命题:①若AC⊥BD,AB⊥CD,则AD⊥BC;②若E、F、G分别是BC、AB、CD的中点,则∠FEG的大小等于异面直线AC与BD所成角的大小;③若点O是四面体ABCD外接球的球心,则O在面ABD上的射影为△ABD的外心;④若四个面是全等的三角形,则ABCD为正四面体 ①③ (填上所有正确命题的序号). 三、 解答题 17、如图,在正三棱柱中,AB=2,,由顶点B沿棱柱侧面经过棱到顶点的最短路线与的交点记为M,求: (I)三棱柱的侧面展开图的对角线长; (II)该最短路线的长及的值; (III)平面与平面ABC所成二面角(锐角)的大小. 本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力. 解:(I)正三棱柱的侧面展开图是长为6,宽为2的矩形 其对角线长为. (II)如图,将侧面绕棱旋转使其与侧面在同一平面上,点B运动到点D的位置,连接交于M,则就是由顶点B沿棱柱侧面经过棱到顶点C1的最短路线,其长为 . ,, 故. (III)连接DB,,则DB就是平面与平面ABC的交线 在中, 又, 由三垂线定理得. 就是平面与平面ABC所成二面角的平面角(锐角), 侧面是正方形, . 故平面与平面ABC所成的二面角(锐角)为. 18.(本小题满分12分) 如图,在棱长为1的正方体ABCD—A1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点. (I)试确定点F的位置,使得D1E⊥平面AB1F; (II)当D1E⊥平面AB1F时,求二面角C1—EF—A的大小(结果用反三角函数值表示). A1 B1 C1 D1 A B C D E 本小题主要考查线面关系和正方体等基础知识,考查空间想象能力和推理运算能力, 解:(I)连结A1B,则A1B是D1E在面ABB1A;内的射影 ∵AB1⊥A1B,∴D1E⊥AB1, 于是D1E⊥平面AB1FD1E⊥AF. 连结DE,则DE是D1E在底面ABCD内的射影. ∴D1E⊥AFDE⊥AF. ∵ABCD是正方形,E是BC的中点. ∴当且仅当F是CD的中点时,DE⊥AF, 即当点F是CD的中点时,D1E⊥平面AB1F. (II)当D1E⊥平面AB1F时,由(I)知点F是CD的中点. 又已知点E是BC的中点,连结EF,则EF∥BD. 连结AC, 设AC与EF交于点H,则CH⊥EF,连结C1H,则CH是 C1H在底面ABCD内的射影. C1H⊥EF,即∠C1HC是二面角C1—EF—C的平面角. 在Rt△C1CH中,∵C1C=1,CH=AC=, ∴tan∠C1HC=. ∴∠C1HC=arctan,从而∠AHC1=. 故二面角C1—EF—A的大小为 19、(本小题满分12分) 如图,在斜三棱柱中,,,侧面与底面ABC所成的二面角为120,E、F分别是棱、的中点。 (Ⅰ)求与底面ABC所成的角; (Ⅱ)证明EA∥平面; (I)解:过作平面平面,垂足为.连接,并延长交于,连接,于是为与底面所成的角. 因为,所以为的平分线 又因为,所以,且为的中点 因此,由三垂线定理 因为,且,所以,于是为二面角的平面角,即 由于四边形为平行四边形,得 所以,与底面所成的角度为 (II) 证明:设与的交点为,则点P为EG的中点,连结PF. 在平行四边形中,因为F是的中点,所以 而EP平面,平面,所以平面 (III)解:连接.在△和△中, △△ 又因为平面,所以是△的外心 设球心为,则必在上,且 在Rt△中,△ 球的体积△ 20、如图,已知两个正四棱锥P-ABCD与Q-ABCD的高都是2,AB=4. Q B C P A D (Ⅰ)证明PQ⊥平面ABCD; (Ⅱ)求异面直线AQ与PB所成的角; (Ⅲ)求点P到平面QAD的距离. 解(Ⅰ)取AD的中点,连结PM,QM. 因为P-ABCD与Q-ABCD都是正四棱锥, 所以AD⊥PM,AD⊥QM. 从而AD⊥平面PQM. 又平面PQM,所以PQ⊥AD. 同理PQ⊥AB,所以PQ⊥平面ABCD. (Ⅱ)连结AC、BD设,由PQ⊥平面ABCD及正四棱锥的性质可知O在PQ上,从而P、A、Q、C四点共面.因为OA=OC,OP=OQ,所以PAQC为平行四边形,AQ∥PC.从而∠BPC(或其补角)是异面直线AQ与PB所成的角. 因为, 所以. 从而异面直线AQ与PB所成的角是. (Ⅲ)连结OM,则.所以∠PMQ=90°,即PM⊥MQ. 由(Ⅰ)知AD⊥PM,所以PM⊥平面QAD. 从而PM的长是点P到平面QAD的距离. 在直角△PMO中,. 即点P到平面QAD的距离是. 21.在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△AEF沿EF折起到的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2) (Ⅰ)求证:A1E⊥平面BEP; (Ⅱ)求直线A1E与平面A1BP所成角的大小; (Ⅲ)求二面角B-A1P-F的大小(用反三角函数表示) 图1 图2 解:不妨设正三角形ABC的边长为3 (1) 在图1中,取BE中点D,连结DF. AE:EB=CF:FA=1:2∴AF=AD=2而∠A=600 , ∴△ADF是正三角形,又AE=DE=1, ∴EF⊥AD在图2中,A1E⊥EF, BE⊥EF, ∴∠A1EB为二面角A1—-EF-B的平面角.由题设条件知此二面角为直二面角,A1E⊥BE,又∴A1E⊥平面BEF,即 A1E⊥平面BEP (2) 在图2中,A1E不垂直A1B, ∴A1E是平面A1BP的斜线,又A1E⊥平面BEP, ∴A1E⊥BP.从而BP垂直于A1E在平面A1BP内的射影(三垂线定理的逆定理)设A1E在平面A1BP内的射影为A1Q,且A1Q交BP于点Q,则∠EA1Q就是A1E与平面A1BP所成的角,且BP⊥A1Q.在△EBP中, BE=BP=2而∠EBP=600 , ∴△EBP是等边三角形,∴BE=EP.又 A1E⊥平面BEP , ∴A1B=A1P, ∴Q为BP的中点,且,又 A1E=1,在Rt△A1EQ中,,∴∠EA1Q=60o, ∴直线A1E与平面A1BP所成的角为600 在图3中,过F作FM⊥ A1P与M,连结QM,QF,∵CP=CF=1, ∠C=600, ∴△FCP是正三角形,∴PF=1.又∴PF=PQ①, ∵A1E⊥平面BEP, ∴A1F=A1Q, ∴△A1FP≌△A1QP从而∠A1PF=∠A1PQ②, 由①②及MP为公共边知△FMP≌△QMP, ∴∠QMP=∠FMP=90o,且MF=MQ, 从而∠FMQ为二面角B-A1P-F的平面角. 在Rt△A1QP中,A1Q=A1F=2,PQ=1,又∴. ∵ MQ⊥A1P,MQ==∴在△FCQ中,FC=1,QC=2, ∠C=600,由余弦定理得 在△FMQ中, ∴二面角B-A1P-F的大小为. 5- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第六 单元测试 立体几何 综合测试
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文