弧长的公式、扇形面积公式及其应用.doc
《弧长的公式、扇形面积公式及其应用.doc》由会员分享,可在线阅读,更多相关《弧长的公式、扇形面积公式及其应用.doc(8页珍藏版)》请在咨信网上搜索。
【本讲教育信息】 一. 教学内容: 弧长及扇形的面积 圆锥的侧面积 二. 教学要求 1、了解弧长计算公式及扇形面积计算公式,并会运用公式解决具体问题。 2、了解圆锥的侧面积公式,并会应用公式解决问题。 三. 重点及难点 重点: 1、弧长的公式、扇形面积公式及其应用。 2、圆锥的侧面积展开图及圆锥的侧面积、全面积的计算。 难点: 1、弧长公式、扇形面积公式的推导。 2、圆锥的侧面积、全面积的计算。 [知识要点] 知识点1、弧长公式 因为360°的圆心角所对的弧长就是圆周长C=2R,所以1°的圆心角所对的弧长是,于是可得半径为R的圆中,n°的圆心角所对的弧长l的计算公式:, 说明:(1)在弧长公式中,n表示1°的圆心角的倍数,n和180都不带单位“度”,例如,圆的半径R=10,计算20°的圆心角所对的弧长l时,不要错写成。 (2)在弧长公式中,已知l,n,R中的任意两个量,都可以求出第三个量。 知识点2、扇形的面积 如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是360°的扇形面积等于圆面积,所以圆心角为1°的扇形面积是,由此得圆心角为n°的扇形面积的计算公式是。 又因为扇形的弧长,扇形面积,所以又得到扇形面积的另一个计算公式:。 知识点3、弓形的面积 (1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。 (2)弓形的周长=弦长+弧长 (3)弓形的面积 如图所示,每个圆中的阴影部分的面积都是一个弓形的面积,从图中可以看出,只要把扇形OAmB的面积和△AOB的面积计算出来,就可以得到弓形AmB的面积。 当弓形所含的弧是劣弧时,如图1所示, 当弓形所含的弧是优弧时,如图2所示, 当弓形所含的弧是半圆时,如图3所示, 例:如图所示,⊙O的半径为2,∠ABC=45°,则图中阴影部分的面积是 ( )(结果用表示) 分析:由图可知由圆周角定理可知∠ABC=∠AOC,所以∠AOC=2∠ABC=90°,所以△OAC是直角三角形,所以 , 所以 注意:(1)圆周长、弧长、圆面积、扇形面积的计算公式。 圆周长 弧长 圆面积 扇形面积 公 式 (2)扇形与弓形的联系与区别 (2)扇形与弓形的联系与区别 图 示 面 积 知识点4、圆锥的侧面积 圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2,圆锥的侧面积,圆锥的全面积 说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。 (2)研究有关圆锥的侧面积和全面积的计算问题,关键是理解圆锥的侧面积公式,并明确圆锥全面积与侧面积之间的关系。 知识点5、圆柱的侧面积 圆柱的侧面积展开图是矩形,如图所示,其两邻边分别为圆柱的高和圆柱底面圆的周长,若圆柱的底面半径为r,高为h,则圆柱的侧面积,圆柱的全面积 知识小结: 圆锥与圆柱的比较 名称 圆锥 圆柱 图形 图形的形成过程 由一个直角三角形旋转得到的,如Rt△SOA绕直线SO旋转一周。 由一个矩形旋转得到的,如矩形ABCD绕直线AB旋转一周。 图形的组成 一个底面和一个侧面 两个底面和一个侧面 侧面展开图的特征 扇形 矩形 面积计算方法 【典型例题】 例1. (2003.辽宁)如图所示,在同心圆中,两圆的半径分别为2,1,∠AOB=120°,则阴影部分的面积是( ) A. B. C. D. 分析:阴影部分所在的两个扇形的圆心角为, 所以 故答案为:B. 例2. (2004·陕西)如图所示,点C在以AB为直径的半圆上,连接AC,BC,AB=10厘米,tan∠BAC=,求阴影部分的面积。 分析:本题考查的知识点有:(1)直径所对圆周角为90°,(2)解直角三角形的知识(3)组合图形面积的计算。 解:因为AB为直径,所以∠ACB=90°, 在Rt△ABC中,AB=10, tan∠BAC=,而tan∠BAC= 设BC=3k,AC=4k,(k不为0,且为正数) 由勾股定理得 所以BC=6,AC=8,,而 所以 例3. (2003.福州)如图所示,已知扇形AOB的圆心角为直角,正方形OCDE内接于扇形AOB,点C,E,D分别在OA,OB及AB弧上,过点A作AF⊥ED交ED的延长线于F,垂足为F,如果正方形的边长为1,那么阴影部分的面积为( ) 分析:连接OD,由正方形性质可知∠EOD=∠DOC=45°,在Rt△OED中,OD=, 因为正方形的边长为1,所以OE=DE=1,所以,设两部分阴影的面积中的一部分为M,另一部分为N,则,阴影部分面积可求,但这种方法较麻烦,用割补法解此题较为简单,设一部分空白面积为P, 因为∠BOD=∠DOC,所以 所以M=P,所以 答案:。 例4. 如图所示,直角梯形ABCD中,∠B=90°,AD∥BC,AB=2,BC=7,AD=3,以BC为轴把直角梯形ABCD旋转一周,求所得几何体的表面积。 分析:将直角梯形ABCD绕BC旋转一周所得的几何体是由相同底面的圆柱和圆锥组成的,所得几何体的表面积是圆锥的侧面积、圆柱的侧面积和底面积三者之和。 解:作DH⊥BC于H,所以DH=AB=2 CH=BC-BH=BC-AD=7-3=4 在△CDH中, 所以 例5. (2003.宁波)已知扇形的圆心角为120°,面积为300平方厘米 (1)求扇形的弧长。 (2)若把此扇形卷成一个圆锥,则这个圆锥的轴截面面积是多少? 分析:(1)由扇形面积公式,可得扇形半径R,扇形的弧长可由弧长公式求得。(2)由此扇形卷成的圆锥如图所示,这个圆锥的轴截面为等腰三角形ABC,(1)问中求得的弧长是这个圆锥的底面圆周长,而圆周长公式为C=2r,底面圆半径r即CD的长可求,圆锥的高AD可在Rt△ADC中求得,所以可求。 解:(1)设扇形的半径为R, 由,得,解得R=30. 所以扇形的弧长(厘米)。 (2)如图所示,在等腰三角形ABC中,AB=AC=R=30,BC=2r,底面圆周长C=2r,因为底面圆周长即为扇形的弧长,所以 在Rt△ADC中,高AD= 所以轴截面面积(平方厘米)。 【模拟试题】(答题时间:40分钟) 一、选择题 1. 若一个扇形的圆心角是45°,面积为2л,则这个扇形的半径是( ) A. 4 B. 2 C. 47л D. 2л 2. 扇形的圆心角是60°,则扇形的面积是所在图面积的( ) A. B. C. D. 3. 扇形的面积等于其半径的平方,则扇形的圆心角是( ) A. 90° B. C. D.180° 4. 两同心圆的圆心是O,大圆的半径是以OA,OB分别交小圆于点M, N.已知大圆半径是小圆半径的3倍,则扇形OAB的面积是扇形OMN的面积的( ) A. 2倍 B. 3倍 C. 6倍 D. 9倍 5. 半圆O的直径为6cm,∠BAC=30°,则阴影部分的面积是( ) A. B. C. D. 6 用一个半径长为 6cm 的半圆围成一个圆锥的侧面,则此圆锥的底面半径为( ) A. 2cm B. 3cm C. 4cm D. 6cm 7. 圆锥的全面积和侧面积之比是3 :2,这个圆锥的轴截面的顶角是( ) A. 30° B. 60° C. 90° D. 120° 8. 已知两个母线相等的圆锥的侧面展开图恰好能拼成一个圆,且它们的侧面积之比为1∶2,则它们的高之比为( ) A. 2:1 B. 3:2 C. 2: D. 5: 9. 如图,在△ABC中,∠C =Rt∠,AC > BC,若以AC为底面圆半径,BC为高的圆锥的侧面积为S1,以BC为底面圆半径,AC为高的圆锥的侧面积为S2,则( ) A. S1=S2 B. S1 > S2 C. S1 < S2 D. S1、S2的大小关系不确定 二、填空题 1. 扇形的弧长是12лcm,其圆心角是90°,则扇形的半径是 cm ,扇形的面积是 cm2. 2. 扇形的半径是一个圆的半径的3倍,且扇形面积等于圆面积,则扇形的圆心角是 . 3. 已知扇形面积是12cm2,半径为8cm,则扇形周长为 . 4 在△ABC中,AB=3,AC=4,∠A=90°,把Rt△ABC绕直线AC旋转一周得到一个圆锥,其全面积为S1;把Rt△ABC绕AB旋转一周得到另一个圆锥,其全面积为S2,则S1: S2= 。 5. 一个圆柱形容器的底面直径为2cm,要用一块圆心角为240°的扇形铁板做一个圆锥形的盖子,做成的盖子要能盖住圆柱形容器,这个扇形的半径至少要有 cm。 6. 如图,扇形AOB的圆心角为60°,半径为6cm,C,D分别是的三等分点,则阴影部分的面积是 。 7. 如图正方形的边长为2,分别以正方形的两个对角顶点为圆心,以2为半径画弧,则阴影部分面积为 。 三、计算题 1. 如图,在Rt△ABC中,AC=BC ,以A为圆心画弧,交AB于点D,交AC延长线于点F,交BC于点E,若图中两个阴影部分的面积相等,求AC与AF的长度之比(л取3)。 2. 一个等边圆柱(轴截面是正方形的圆柱)的侧面积是S1,另一个圆锥的侧面积是S2,如果圆锥和圆柱等底等高,求. 3. 圆锥的底面半径是R,母线长是3R,M是底面圆周上一点,从点M拉一根绳子绕圆锥一圈,再回到M点,求这根绳子的最短长度. 【试题答案】 一、选择题 1. A 2. B 3. C 4. D 5. B 6. B 7. B 8. C 9. B 二、填空题 1、24 144 2、40° 3、19cm 4、3:4 5、3 6、2 7、2-4 三、计算题 1、连接AE,则,所以 2、 3、连接展开图的两个端点MM',即是最短长度。 利用等量关系得出∠MAM′=120°,∠AMD=30°,AD=,- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 公式 扇形 面积 及其 应用
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文