八下数学期末压轴题.doc
《八下数学期末压轴题.doc》由会员分享,可在线阅读,更多相关《八下数学期末压轴题.doc(14页珍藏版)》请在咨信网上搜索。
八下数学期末压轴题整理 1.阅读下面的短文,并回答下列问题 我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体。如图,甲、乙是两个不同的立方体,立方体都是相似体,它们的一切对应线段之比都等于相似比(a:b)。设S甲、S乙 分别表示这两个立方体的表面积,则,V甲、V乙 分别表示这两个立方体的体积,则。(1)下列几何体中,一定属于相似体的是( ) A两个球体 B两个圆锥体 C两个圆柱体 D两个长方体 (2)请归纳出相似体的三条主要性质:①相似体的一切对应线段(或弧)长度的比等于_______ ;②相似体表面积的比等于_____________ ;③相似体体积的比等于________________________ 。 (3)寒假里,康子帮母亲到市场去买鱼,鱼摊上有一种鱼,个个都长得非常相似,现有大小两种不同的价钱,如下图所示,鱼长10厘米的每条10元,鱼长13厘米的每条15元。康子不知道买哪种更好些,你能否帮他出出主意? 2.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段DA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒, (1)求直线AB的解析式; (2)当t为何值时,△APQ与△AOB相似?并求出此时点P与点Q的坐标; (3)当t为何值时, △APQ 的面积为个平方单位? 3.“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB置于直角坐标系中,边OB在轴上、边OA与函数的图象交于点P,以P为圆心、以2OP为半径作弧交图象于点R.分别过点P和R作轴和轴的平行线,两直线相交于点M ,连接OM得到∠MOB,则∠MOB=∠AOB.要明白帕普斯的方法,请研究以下问题: (1)设、,求直线OM对应的函数表达式(用含的代数式表示). (2)分别过点P和R作轴和轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=∠AOB. (3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明). B C D A P E Q 4.已知,梯形ABCD中,AD∥BC,AD<BC,且AD=5,AB=DC=2. (1)P为AD上一点,满足∠BPC=∠A,求证:△ABP∽△DPC; (2)如果点P在AD边上移动(P与点A、D不重合), 且满足∠BPE=∠A,PE交直线BC于点E,同时交直线DC于点Q ,那么,当点Q在线段DC的延长线上时,设AP=x,CQ=y, 求关于的函数解析式,并写出函数的取值范围. 5、如图在平面直角坐标系中,已知直角梯形OABC的顶点分别是O(0,0),点A(9,0),B(6,4),C(0,4).点P从点C沿C—B—A运动,速度为每秒2个单位,点Q从A向O点运动,速度为每秒1个单位,当其中一个点到达终点时,另一个点也停止运动.两点同时出发,设运动的时间是t秒.(1)点P和点Q 谁先到达终点?到达终点时t的值是多少? (2)当t取何值时,直线PQ∥AB ?并写出此时点P的坐标.(写出解答过程) (3)是否存在符合题意的t的值,使直角梯形OABC被直线PQ分成面积相等的两个部分?如果存在,求出t的值;如果不存在,请说明理由. (4)探究:当t取何值时,直线PQ⊥AB ?(只要直接写出答案,不需写出计算过程). 图 1 图 2(备用) 图 3(备用 6.如图一,等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连结AE。求证:AE∥BC; (2)如图二,将(1)中等边△ABC的形状改成以BC为底边的等腰三角形,所作△EDC改成相似于△ABC。请问:是否仍有AE∥BC?证明你的结论。 7.如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点. 连AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F. (1)求证:△APE∽△ADQ; (2)设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值?最大值为多少? (3)当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必给出证明) 8、⑴如图①,已知AB⊥BD,CD⊥BD,垂足分别为B、D,AD与BC相交于点E,EF⊥BD,垂足为F,试回答图中,△DEF∽△ ,△BEF∽△ ,△ABE∽△ ⑵、如图②,工地上有两根电线杆,分别在高为4m、6m的A、C处用铁丝将两杆固定,求铁丝AD与铁丝BC的交点M处离地面的高。 A C B D F E 图① A B E F C D 图③ 图② M F E D C B H A ⑶、如图③,已知:AB∥CD,AD、BC相交于点E,过点E作EF∥AB,交AB于点F,分别对AB、CD取几组简单的值,并计算 的值,你有什么发现?请给予说明。 9、已知:如图,在⊿ABC中,AB=3,AC=2,能否在AC上(不同于A、C)找到点D,过点D作DE∥AB交BC于E,过点E作EF∥AC交AB于F,连结FD,将⊿ABC分割成四个相似的小三角形,但其中至少有两个小三角形的相似比不等于1?若能,求出点D的位置;若不能,请说明理由。 10. 在△ABC中,AB=AC=2,∠A=90°,取一块含45°角的直角三角形尺,将直角顶点放在斜边BC边的中点O处,顺时针方向旋转(如图1);使90°角的两边与Rt△ABC的两边AB,AC分别相交于点E,F(如图2),设BE=,CF=。 (1)求与的函数解析式,并写出的取值范围; (2)将三角尺绕O点旋转的过程中,△OEF是否能成为等腰直角三角形?若能,请证明你的结论; (3)若将直角三角形尺45°角的顶点放在斜边BC边的中点O处,顺时针方向旋转(如图3),其它条件不变。 ①试直接写出与的函数解析式,及的取值范围; ②将三角尺绕O点旋转(图4)的过程中,△OEF是否能成为等腰三角形?若能,求出△OEF为等腰三角形时的值;若不能,请说明理由。 B C A 图甲 11. 定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形. 探究:(1)如图甲,已知△ABC中∠C=900,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画 出分割线,并说明理由. (2)一般地,“任意三角形都是自相似图形”,只要顺次连结三角形各边中点,则可将原三角形分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连结各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连结它的各边中点所进行的分割,称为2阶分割(如图2)…依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为SN. ①若△DEF的面积为10000,当n为何值时,2<Sn<3? (请用计算器进行探索,要求至少写出三次的尝试估算过程) ②当n>1时,请写出一个反映Sn-1,Sn,Sn+1 之间关系的等式(不必证明) 12、有一个测量弹跳力的体育器材,如图所示,竖杆AC、BD的长度分别为200厘米和300厘米,CD=300厘米.现有一人站在斜杆AB下方地面上的点E处,直立、单手上举时中指指尖(点F)到地面的高度为EF,屈膝尽力跳起时,中指指尖刚好接触到斜杆AB的点G处,那么GF的值就可作为该同学的弹跳成绩y(厘米).设CE=x(厘米), EF=a(厘米). (1)求出由x和a算出y的计算公式. (2)现有甲、乙两组同学,每组三人,每人各选择一个适当的位置尽力跳了一次,且均刚好触到斜杆,由所得公式算得两组同学弹跳成绩如表所示,由于某种原因,甲组一同学C的弹跳成绩看不清楚,但知他的位置为x=150厘米,a=205厘米,请你计算同学C此次的弹跳成绩,并从两组同学弹跳成绩的稳定性角度比较甲、乙两组同学的弹跳成绩. 甲组 乙组 A同学 B同学 C同学 a同学 b同学 c同学 弹跳成绩(厘米) 36 39 42 44 34 13、当x=6时,反比例函数y=和一次函数y=-x-7的值相等.(1)求反比例函数的解析式.(2)若等腰梯形ABCD的顶点A、B在这个一次函数的图象上,顶点C、D在这个反比例函数的图象上,且BC∥AD∥y轴,A、B两点的横坐标分别是a和a+2(a>0),求a的值. 14、如图,在△OAB中,O为坐标原点,横、纵轴的单位长度相同,A、B的坐标分别为(8,6),(16,0),点P沿OA边从点O开始向终点A运动,速度每秒1个单位,点Q沿BO边从B点开始向终点O运动,速度每秒2个单位,如果P、Q同时出发,用t(秒)表示移动时间,当这两点中有一点到达自己的终点时,另一点也停止运动。 求(1)几秒时PQ∥AB (2)设△OPQ的面积为y,求y与t的函数关系式 (3)△OPQ与△OAB能否相似,若能,求出点P的坐标, 若不能,试说明理由 15、在△ABC中,AB=5,BC=3AC=4,PQ//AB,点P在AC上,(与A、C)不重合,Q在BC上。 1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长; 2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长; 3)在AB上是否存在点M,使得△PQM为等腰直角三角形?若存在说明理由,若不存在,求PQ的长。 16、已知如图,四边形ABCD是菱形,AF⊥AD交BD于E,交BC于F. (1)求证:AD2= DE·DB; (2)过点E作EG⊥AF交AB于点G,若线段BE、DE(BE<DE)的长是方程(m>0)的两个根,且菱形ABCD的面积为6,求EG的长. 17、某房地产集团筹建一小区,居民楼均为平顶条式,南北朝向,楼高统一为16m(五层).已知该城市 冬至正午时分太阳高度最低,太阳光线与水平线的夹角为32°,如果南北两楼相隔仅有20m(如图所示), 试求:(1)此时南楼的影子落在北楼上有多高?(已知tan32°=0.6249) (2)如按城市规划要求,使前后楼每层居民在冬天都能有阳光,两楼间的距离应是多少米? 19、如图(1)所示,四边形ABCD是一张矩形纸片,∠BAC=α (0°<α45°),现将其折叠,使A、C二点重合. (1)作出折痕EF; (2)设AC=x,EF=y,求出y与x之间的函数关系式; (3)如图(2),当45°<α<90°时,(2)中求得的函数的关系式是否成立?若成立,请说明理由;若不 成立,请求出当45°<α<90°时,y与x之间的函数关系式. 18.(1)将甲种漆3g与乙种漆4g倒入一容器内搅匀,则甲种漆占混合漆的 ;如从这容器内又倒出5g漆,那么这5㎏漆中有甲种漆有 g. (2)小明到姑姑家吃早点时,表妹小红很淘气,她先从一杯豆浆中,取出一勺豆浆,倒入盛牛奶的杯子中搅匀,再从盛牛奶的杯子中取出一勺混合的牛奶和豆浆,倒入盛豆浆的杯子中.小明想:现在两个杯子中都有了牛奶和豆浆,究竟是豆浆杯子中的牛奶多,还是牛奶杯子中的豆浆多呢?(两个杯子原来的牛奶和豆浆一样多).现在来看小明的分析: 设混合前两个杯子中盛的牛奶和豆浆的体积相等,均为a,勺的容积为b.为便于理解,将混合前后的体积关系制成下表: 混合前的体积 第一次混合后 第二次混合后 豆浆 牛奶 豆浆 牛奶 豆浆 牛奶 豆浆杯子 a 0 a-b 牛奶杯子 0 a b ①将上面表格填完(表格中只需列出算式,无需化简). ②请通过计算判断:最后两个杯子中都有牛奶和豆浆,究竟是豆浆杯子中的牛奶多,还是牛奶杯子中的豆浆多呢? 相关链接 1、“定值”可以理解为一个固定不变的值或常量. 2、成语“形影不离”的原意是指:人的影子与自己紧密相伴,无法分离,但在灯光下,人的运动速度和影子的速度却不一样哟! 19.如图,李华晚上在路灯下散步.已知李华的身高,灯柱的高,两灯柱之间的距离. (1)若李华距灯柱的水平距离,求他影子的长; (2)若李华在两路灯之间行走,则他前后的两个影子的长度之和()是否是定值?请说明理由; (3)若李华在点朝着影子(如图箭头)的方向以匀速行走,试求他影子的顶端在地面上移动的速度. 答案28、解:(1)由已知:, . , , , C P A B O 解得:. (2), , , 即,即. . 同理可得:, 是定值. (3)根据题意设李华由到,身高为,代表其影长(如上图). 由(1)可知即, , 同理可得:, , 由等比性质得:, 当李华从走到的时候,他的影子也从移到,因此速度与路程成正比 , 所以人影顶端在地面上移动的速度为. 20.把两块全等的等腰直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q. (1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP×CQ= . (2)将三角板由图1所示的位置绕点O沿逆时针方向旋转, 设旋转角为 .其中 ,问AP×CQ的值是否改变?说明你的理由. (3)在(2)的条件下,设CQ=X,两块三角板重叠面积为Y,求Y与X的函数关系式. 21.请阅读下面的材料,并回答所提出的问题. 三角形内角平分线性质定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例. 已知:如图,△ABC中,AD是角平分线,求证:. 分析:要证,一般只要证BD、DC与AB、AC或BD、AB与DC、AC所在的三角形相似。现在B、D、C在一直线上,△ABD与△ADC不相似,需要考虑用别的方法换比. 在比例式中,AC恰是BD、DC、AB的第四比例项,所以考虑过C作CE∥AD,交BA的延长线于E,从而得到BD、DC、AB的第四比例项AE,这样,证明就可以转化为证AE=AC. 证明:过C作CE∥DA,交BA的延长线于E.(完成以下证明过程) 问题: ①上述证明过程中,用到了哪些定理?(写对两个定理即可) . ②用三角形内角平分线性质定理解答问题: 已知:如图,△ABC中,AD是角平分线,AB=5cm,AC=4em,BC=7cm. 求:BD的长. A B C 22、(14分)如图,在平面直角坐标系xOy中,矩形OEFG的顶点E坐标为(4,0),顶点G坐标为(0,2).将矩形OEFG绕点O逆时针旋转,使点F落在轴的点N处,得到矩形OMNP,OM与GF交于点A. (1)判断△OGA和△OMN是否相似,并说明理由; (2)求过点A的反比例函数解析式; (3)设(2)中的反比例函数图象交EF于点B,求直线AB的解析式; (4)请探索:求出的反比例函数的图象,是否经过矩形OEFG的对称中心,并说明理由. 6.将正方形ABCD折叠,使顶点A与CD边上的点M重合, 第28题图 折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图). (1)如果正方形边长为2,M为CD边中点。求:EM的长; (2)如果M为CD边的中点,求证:DE∶DM∶EM=3∶4∶5; (3)如果M为CD边上的任意一点,设AB=2a, 问△CMG的周长是否与点M的位置有关?若有关, 请把△CMG的周长用含DM的长x的代数式表示;若无关,请说明理由. 34.(本题6分)已知一次函数与双曲线在第一象限交于A、B两点,A点横坐标为1.B点横坐标为4 (1)求一次函数的解析式; (2)根据图象指出不等式的解集; (3) 点P是x轴正半轴上一个动点,过P点作x轴的垂线分别交直线和双曲线于M、N,设P点的横坐标是t(t>0),△OMN的面积 为S,求S和t的函数关系式。 答案34、(1)y=-x+5;(2)x<o或1<x<4;(3)S=-0.5t2+2.5t-2. 28、小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图(1),垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为 . (2)不改变(1)中灯泡的高度,将两个边长为30cm的正方形框架按图(2)摆放,请计算此时横向影子A′B,D′C的长度和为多少? (3)有n个边长为a的正方形按图(3)摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示) 图(3) 图(2) 图(1) 20、如图,△ABC中,AB=AC=,BC=2,,,……, 在AB上,,,……在AC上,四边形E1F1GH1,E2F2G2H2,……,EnFnGnHn是△ABC的内接矩形,F1,F2,……Fn,G,G2,……,Gn在BC上,则这n个矩形的周长和是- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 期末 压轴
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文