求递推数列的通项公式的九种方法.doc
《求递推数列的通项公式的九种方法.doc》由会员分享,可在线阅读,更多相关《求递推数列的通项公式的九种方法.doc(5页珍藏版)》请在咨信网上搜索。
求递推数列的通项公式的九种方法 利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一. 一、作差求和法m w.w.w.k.s.5.u.c.o 例1 在数列{}中,,,求通项公式. 解:原递推式可化为:则 ,……,逐项相加得:.故. 二、作商求和法 例2 设数列{}是首项为1的正项数列,且(n=1,2,3…),则它的通项公式是=▁▁▁(2000年高考15题) 解:原递推式可化为: =0 ∵ >0, 则 ……, 逐项相乘得:,即=. 三、换元法 例3 已知数列{},其中,且当n≥3时,,求通项公式(1986年高考文科第八题改编). 解:设,原递推式可化为: 是一个等比数列,,公比为.故.故.由逐差法可得:. 例4已知数列{},其中,且当n≥3时,,求通项公式。解 由得:,令,则上式为,因此是一个等差数列,,公差为1.故.。 由于 又 所以,即 四、积差相消法 例5(1993年全国数学联赛题一试第五题)设正数列,,…,,…满足= 且,求的通项公式. 解 将递推式两边同除以整理得: 设=,则=1,,故有 ⑴ ⑵ … … … … () 由⑴+ ⑵ +…+()得=,即=. 逐项相乘得:=,考虑到, 故 . 五、取倒数法 例6 已知数列{}中,其中,且当n≥2时,,求通项公式。 解 将两边取倒数得:,这说明是一个等差数列,首项是,公差为2,所以,即. 六、取对数法 例7 若数列{}中,=3且(n是正整数),则它的通项公式是=▁▁▁(2002年上海高考题). 解 由题意知>0,将两边取对数得,即,所以数列是以=为首项,公比为2的等比数列, ,即. 七、平方(开方)法 例8 若数列{}中,=2且(n),求它的通项公式是. 解 将两边平方整理得。数列{}是以=4为首项,3为公差的等差数列。。因为>0,所以。 八、待定系数法 待定系数法解题的关键是从策略上规范一个递推式可变成为何种等比数列,可以少走弯路.其变换的基本形式如下: 1、(A、B为常数)型,可化为=A()的形式. 例9 若数列{}中,=1,是数列{}的前项之和,且(n),求数列{}的通项公式是. 解 递推式可变形为 (1) 设(1)式可化为 (2) 比较(1)式与(2)式的系数可得,则有。故数列{}是以为首项,3为公比的等比数列。=。所以。 当n,。 数列{}的通项公式是 。 2、(A、B、C为常数,下同)型,可化为=)的形式. 例10 在数列{}中,求通项公式。 解:原递推式可化为: ① 比较系数得=-4,①式即是:. 则数列是一个等比数列,其首项,公比是2. ∴ 即. 3、型,可化为的形式。 例11 在数列{}中,,当, ① 求通项公式. 解:①式可化为: 比较系数得=-3或=-2,不妨取=-2.①式可化为: 则是一个等比数列,首项=2-2(-1)=4,公比为3. ∴.利用上题结果有: . 4、型,可化为的形式。 例12 在数列{}中,,=6 ① 求通项公式. 解 ①式可化为: ② 比较系数可得: =-6,,② 式为 是一个等比数列,首项,公比为. ∴ 即 故. 九、猜想法 运用猜想法解题的一般步骤是:首先利用所给的递推式求出……,然后猜想出满足递推式的一个通项公式,最后用数学归纳法证明猜想是正确的。 例13 在各项均为正数的数列中,为数列的前n项和,=+ ,求其通项公式。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 求递推 数列 公式 方法
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文