高三文科数学044.doc
《高三文科数学044.doc》由会员分享,可在线阅读,更多相关《高三文科数学044.doc(9页珍藏版)》请在咨信网上搜索。
东北师范大学附属中学网校(版权所有 不得复制) 期数: 0512 SXG3 044 学科:文科数学 年级:高三 编稿老师:李晓松 审稿老师:杨志勇 [同步教学信息] 预 习 篇 预习篇三十三 高三文科数学总复习二十八 ———不等式的证明 【学法引导】 不等式的证明,方法灵活多样,它可以和很多内容结合.高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本难点着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力. 1.不等式证明常用的方法有:比较法、综合法和分析法,它们是证明不等式的最基本的方法. (1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述;如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证. (2)综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野. 2.不等式证明还有一些常用的方法:换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等.换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性.放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查.有些不等式,从正面证如果不易说清楚,可以考虑反证法.凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法. 证明不等式时,要依据题设、题目的特点和内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤、技巧和语言特点. 【应用举例】 例1 证明不等式(n∈N*). 命题意图:本题是一道考查数学归纳法、不等式证明的综合性题目,考查学生观察能力、构造能力以及逻辑分析能力. 知识依托:本题是一个与自然数n有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等. 错解分析:此题易出现下列放缩错误: 这样只注重形式的统一,而忽略大小关系的错误也是经常发生的. 技巧与方法:本题证法一采用数学归纳法从n=k到n=k+1的过渡采用了放缩法;证法二先放缩,后裂项,有的放矢,直达目标;而证法三运用函数思想,借助单调性,独具匠心,发人深省. 证法一:(1)当n=1时,不等式左端等于1,右端等于2,所以不等式成立; (2)假设n=k(k≥1)时,不等式成立,即1+<2, ∴当n=k+1时,不等式成立. 综合(1)、(2)得:当n∈N*时,都有1+<2. 另从k到k+1时的证明还有下列证法: 证法二:对任意k∈N*,都有: 证法三:设f(n)= 那么对任意k∈N*,都有: ∴f(k+1)>f(k) 因此,对任意n∈N*,都有f(n)>f(n-1)>…>f(1)=1>0, ∴ 例2 求使≤a(x>0,y>0)恒成立的a的最小值. 命题意图:本题考查不等式证明、求最值函数思想、以及学生逻辑分析能力. 知识依托:该题实质是给定条件求最值的题目,所求a的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值. 错解分析:本题解法三利用三角换元后确定a的取值范围,此时我们习惯是将x、y与cosθ、sinθ来对应进行换元,即令=cosθ,=sinθ(0<θ<),这样也得a≥sinθ+cosθ,但是这种换元是错误的.其原因是:(1)缩小了x、y的范围;(2)这样换元相当于本题又增加了“x、y=1”这样一个条件,显然这是不对的. 技巧与方法:除了解法一经常用的重要不等式外,解法二的方法也很典型,即若参数a满足不等关系,a≥f(x),则amin=f(x)max;若 a≤f(x),则amax=f(x)min,利用这一基本事实,可以较轻松地解决这一类不等式中所含参数的值域问题.还有三角换元法求最值用的恰当好处,可以把原问题转化. 解法一:由于a的值为正数,将已知不等式两边平方,得: x+y+2≤a2(x+y),即2≤(a2-1)(x+y), ① ∴x,y>0,∴x+y≥2. ② 当且仅当x=y时,②中有等号成立. 比较①、②得a的最小值满足a2-1=1, ∴a2=2,a= (因a>0),∴a的最小值是. 解法二:设. ∵x>0,y>0,∴x+y≥2 (当x=y时“=”成立), ∴≤1,的最大值是1. 从而可知,u的最大值为, 又由已知,得a≥u,∴a的最小值为. 解法三:∵y>0,∴原不等式可化为+1≤a, 设=tanθ,θ∈(0,). ∴tanθ+1≤a,即tanθ+1≤asecθ ∴a≥sinθ+cosθ=sin(θ+), ③ 又∵sin(θ+)的最大值为1(此时θ=),由③式可知a的最小值为. 例3 已知a>0,b>0,且a+b=1. 求证:(a+)(b+)≥. 证法一:(分析综合法) 欲证原式,即证4(ab)2+4(a2+b2)-25ab+4≥0,即证4(ab)2-33(ab)+8≥0,即证ab≤或ab≥8. ∵a>0,b>0,a+b=1,∴ab≥8不可能成立 ∵1=a+b≥2,∴ab≤,从而得证. 证法二:(均值代换法) 设a=+t1,b=+t2. ∵a+b=1,a>0,b>0,∴t1+t2=0,|t1|<,|t2|< 显然当且仅当t=0,即a=b=时,等号成立. 证法三:(比较法) ∵a+b=1,a>0,b>0,∴a+b≥2,∴ab≤ 证法四:(综合法) ∵a+b=1, a>0,b>0,∴a+b≥2,∴ab≤. . 证法五:(三角代换法) ∵ a>0,b>0,a+b=1,故令a=sin2α,b=cos2α,α∈(0,). 【强化训练】 1.已知a,b,c为正实数,a+b+c=1. 求证:(1)a2+b2+c2≥;(2)≤6 2.已知x,y,z∈R,且x+y+z=1,x2+y2+z2=,证明:x,y,z∈[0,] 3.证明下列不等式: (1)若x,y,z∈R,a,b,c∈R+,则z2≥2(xy+yz+zx); (2)若x,y,z∈R+,且x+y+z=xyz, 则≥2(). 4.已知i,m、n是正整数,且1<i≤m<n. (1)证明:niA<miA; (2)证明:(1+m)n>(1+n)m 5.若a>0,b>0,a3+b3=2,求证:a+b≤2,ab≤1. 参考答案 1.(1)证法一:a2+b2+c2-=(3a2+3b2+3c2-1) =[3a2+3b2+3c2-(a+b+c)2] =[3a2+3b2+3c2-a2-b2-c2-2ab-2ac-2bc] =[(a-b)2+(b-c)2+(c-a)2]≥0 ∴a2+b2+c2≥ 证法二:∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc≤a2+b2+c2+a2+b2+a2+c2+b2+c2, ∴3(a2+b2+c2)≥(a+b+c)2=1,∴a2+b2+c2≥. 证法三:∵,∴a2+b2+c2≥, ∴a2+b2+c2≥. 证法四:设a=+α,b=+β,c=+γ. ∵a+b+c=1,∴α+β+γ=0, ∴a2+b2+c2=(+α)2+(+β)2+(+γ)2 =+ (α+β+γ)+α2+β2+γ2 =+α2+β2+γ2≥ ∴a2+b2+c2≥. ∴原不等式成立. 证法二: ∴≤<6, ∴原不等式成立. 2.证法一:由x+y+z=1,x2+y2+z2=,得x2+y2+(1-x-y)2=,整理成关于y的一元二次方程得: 2y2-2(1-x)y+2x2-2x+=0, ∵y∈R,故Δ≥0, ∴4(1-x)2-4×2(2x2-2x+)≥0,得0≤x≤,∴x∈[0,] 同理可得y,z∈[0,] 证法二:设x=+x′,y=+y′,z=+z′,则x′+y′+z′=0, 于是=(+x′)2+(+y′)2+(+z′)2 =+x′2+y′2+z′2+ (x′+y′+z′) =+x′2+y′2+z′2≥+x′2+=+x′2 故x′2≤,x′∈[-,],x∈[0,],同理y,z∈[0,] 证法三:设x、y、z三数中若有负数,不妨设x<0, 则x2>0,=x2+y2+z2≥x2+>,矛盾. x、y、z三数中若有最大者大于,不妨设x>, 则=x2+y2+z2≥x2+=x2+=x2-x+=x(x-)+>;矛盾. 故x、y、z∈[0,]. ∵上式显然成立,∴原不等式得证. 4.证明:(1)对于1<i≤m,且A=m·…·(m-i+1), , 由于m<n,对于整数k=1,2,…,i-1,有, 所以 (2)由二项式定理有: (1+m)n=1+Cm+Cm2+…+Cmn, (1+n)m=1+Cn+Cn2+…+Cnm, 由(1)知miA>niA (1<i≤m,而C= ∴miCin>niCim(1<m<n ∴m0C=n0C=1,mC=nC=m·n,m2C>n2C,…, mmC>nmC,mm+1C>0,…,mnC>0, ∴1+Cm+Cm2+…+Cmn>1+Cn+C2mn2+…+Cnm, 即(1+m)n>(1+n)m成立. 5.证法一:因为a>0,b>0,a3+b3=2,所以 (a+b)3-23=a3+b3+3a2b+3ab2-8=3a2b+3ab2-6 =3[ab(a+b)-2]=3[ab(a+b)-(a3+b3)]=-3(a+b)(a-b)2≤0. 即(a+b)3≤23,又a+b>0,所以a+b≤2,因为2≤a+b≤2, 所以ab≤1. 证法二:设a、b为方程x2-mx+n=0的两根,则, 因为a>0,b>0,所以m>0,n>0,且Δ=m2-4n≥0 ① 因为2=a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]=m(m2-3n), 所以n= ② 将②代入①得m2-4()≥0, 即≥0,所以-m3+8≥0,即m≤2,所以a+b≤2, 由2≥m 得4≥m2,又m2≥4n,所以4≥4n, 即n≤1,所以ab≤1. 证法三:因为a>0,b>0,a3+b3=2,所以 2=a3+b3=(a+b)(a2+b2-ab)≥(a+b)(2ab-ab)=ab(a+b) 于是有6≥3ab(a+b),从而8≥3ab(a+b)+2=3a2b+3ab2+a3+b3= (a+b)3,所以a+b≤2,(下略) 证法四:因为≥0, 所以对任意非负实数a、b,有≥ 因为a>0,b>0,a3+b3=2,所以1=≥, ∴≤1,即a+b≤2,(以下略) 证法五:假设a+b>2,则 a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]>(a+b)ab>2ab,所以ab<1, 又a3+b3=(a+b)[a2-ab+b2]=(a+b)[(a+b)2-3ab]>2(22-3ab) 因为a3+b3=2,所以2>2(4-3ab),因此ab>1,前后矛盾,故a+b≤2(以下略) 返 回 9- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 文科 数学 044
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文