单元测试卷第06单元++等差数列与等比数列.doc
《单元测试卷第06单元++等差数列与等比数列.doc》由会员分享,可在线阅读,更多相关《单元测试卷第06单元++等差数列与等比数列.doc(8页珍藏版)》请在咨信网上搜索。
考网| 精品资料共享 你的分享,大家共享 第六单元 等差数列与等比数列 一.选择题 (1) 已知等差数列中,的值是 ( ) A 15 B 30 C 31 D 64 (2) 在各项都为正数的等比数列{an}中,首项a1=3 ,前三项和为21,则a3+ a4+ a5=( ) A 33 B 72 C 84 D 189 (3)已知等差数列的公差为2,若成等比数列, 则= ( ) A –4 B –6 C –8 D –10 (4) 如果数列是等差数列,则 ( ) A B C D (5) 已知由正数组成的等比数列{an}中,公比q=2, a1·a2·a3·…·a30=245, 则 a1·a4·a7·…·a28= ( ) A 25 B 210 C 215 D 220 (6) 是首项=1,公差为=3的等差数列,如果=2005,则序号等于 ( ) A 667 B 668 C 669 D 670 (7) 数列{an}的前n项和Sn=3n-c, 则c=1是数列{an}为等比数列的 ( ) A 充分非必要条件 B 必要非充分条件 C充分必要条件 D 既非充分又非必要条件 (8) 在等比数列{an}中, a1<0, 若对正整数n都有an<an+1, 那么公比q的取值范围是 ( ) A q>1 B 0<q<1 C q<0 D q<1 (9) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点。已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是 ( ) A 4; B 5; C 6; D 7。 (10) 已知f(x)=bx+1为x的一次函数, b为不等于1的常数, 且 g(n)=, 设an= g(n)-g(n-1) (n∈N※), 则数列{an}是 ( ) A 等差数列 B等比数列 C 递增数列 D 递减数列 二.填空题 (11) 在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为_____. (12) 设数列{an}的前n项和为Sn,Sn=(对于所有n≥1),且a4=54,则a1的数值是_____. (13) 等差数列{an}的前m项和为30, 前2m项和为100, 则它的前3m项和为 . (14) 设等比数列的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q的值为_________ 三.解答题 (15) 已知数列为等差数列,且 求数列的通项公式; (16) 设数列的前n项和为Sn=2n2,为等比数列,且 (Ⅰ)求数列和的通项公式; (Ⅱ)设,求数列的前n项和Tn. (17) 已知等比数列{an}的各项都是正数, Sn=80, S2n=6560, 且在前n项中, 最大的项为54, 求n的值. (18) 已知{}是公比为q的等比数列,且成等差数列. (Ⅰ)求q的值; (Ⅱ)设{}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.. 参考答案 一选择题: 1.A [解析]:已知等差数列中, 又 2.C [解析]:在各项都为正数的等比数列{an}中,首项a1=3 ,前三项和为21 故3+3q+3q2 =21,解得q=2 因此a3+ a4+ a5=21=84 3.B [解析]:已知等差数列的公差为2,若成等比数列, 则 4.B [解析]: ∵∴故选B 5.A [解析]:已知由正数组成的等比数列{an}中,公比q=2, a1·a2·a3·…·a30=245, 则 a2·a5·a8·…·a29= a1·a4·a7·…·a28·210 a3·a6·a9·…·a30= a1·a4·a7·…·a28·220 故 a1·a4·a7·…·a28=25 6.C [解析]: 是首项=1,公差为=3的等差数列,如果=2005, 则1+3(n-1)=2005,故n=669 7.C [解析]:数列{an}的前n项和Sn=3n-c, 则an=由等比数列的定义可知: c=1数列{an}为等比数列 8.B [解析]:在等比数列{an}中, a1<0, 若对正整数n都有an<an+1, 则an<anq 即an(1-q)<0 若q<0,则数列{an}为正负交错数列,上式显然不成立; 若q>0,则an<0,故1 -q>0,因此0<q<1 9.C [解析]: 底层正方体的表面积为24;第2层正方体的棱长,每个面的面积为;第3层正方体的棱长为,每个面的面积为;┉,第n层正方体的棱长为,每个面的面积为; 若该塔形为n层,则它的表面积为 24+4[++┉+]=40 因为该塔形的表面积超过39,所以该塔形中正方体的个数至少是6 10.B [解析]: 已知f(x)=bx+1为x的一次函数, b为不等于1的常数, 且 g(n)=, 则g(1)=b+1,g(2)=b2+b+1,g(3)=b3+ b2+b+1, ┉,g(n)=+┉+ b2+b+1. a1=b,a2= b2,a3= b3, ┉, 故数列{an} 是等比数列 二填空题: 11. 216 [解析]: 在和之间插入三个数,使这五个数成等比数列, 设插入三个数为a、b、c,则b2=ac= 因此插入的三个数的乘积 为36 12. 2 [解析]:设数列{an}的前n项和为Sn,Sn=(对于所有n≥1), 则a4=S4-S3,且a4=54,则a1 =2 13. 210 [解析]:∵{an}等差数列 , ∴ Sm,S2m-Sm , S3m-S2m 也成等差数列 即2(S2m-Sm)= Sm + (S3m-S2m) ∴S3m=3(S2m-Sm)=210 14. –2 [解析]:设等比数列的公比为q,前n项和为Sn,且Sn+1,Sn,Sn+2成等差数列,则2Sn=Sn+1+Sn+2 (*) 若q=1, 则Sn=na1, (*)式显然不成立, 若q1,则(*)为 故 即q2+q-2=0 因此q=-2 三解答题 (15)解:设等差数列的公差为d. 由即d=1. 所以即 (16) (Ⅰ)当 故{an}的通项公式为的等差数列. 设{bn}的通项公式为 故 (II) 两式相减得 (17) 解: 由已知an>0, 得q>0, 若q=1, 则有Sn=na1=80, S2n=2na1=160与S2n=6560矛盾, 故q≠1. ∵, 由(2)÷(1)得qn=81 (3). ∴q>1, 此数列为一递增数列, 在前n 项中, 最大一项是an, 即an=54. 又an=a1qn-1=qn=54, 且qn=81, ∴a1=q. 即a1=q. 将a1=q代入(1)得q(1-qn)=80(1-qn), 即q(1-81)=80(1-q), 解得q=3. 又qn=81, ∴n=4. (18) 解:(Ⅰ)由题设 (Ⅱ)若 当 故 若 当 故对于 8- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 单元测试 06 单元 等差数列 等比数列
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文