中国人民大学附中特级教师梁丽平高考数学综合能力题30讲第17讲二次曲线.doc
《中国人民大学附中特级教师梁丽平高考数学综合能力题30讲第17讲二次曲线.doc》由会员分享,可在线阅读,更多相关《中国人民大学附中特级教师梁丽平高考数学综合能力题30讲第17讲二次曲线.doc(5页珍藏版)》请在咨信网上搜索。
Doc521资料分享网(D) – 资料分享我做主! 数学高考综合能力题选讲17 二次曲线 100080 北京中国人民大学附中 梁丽平 题型预测 高考试题中,解析几何试题的分值一般占20%左右,而圆锥曲线的内容在试卷中所占比例又一直稳定在14%左右,选择、填空、解答三种题型均有.选择、填空题主要考查圆锥曲线的标准方程及几何性质等基础知识、基本技能和基本方法的运用;以圆锥曲线为载体的解答题设计中,重点是求曲线的方程和直线与圆锥曲线的位置关系讨论,它们是热中之热.解答题的题型设计主要有三类: (1)求平面曲线(整体或部分)的方程或轨迹; (2)圆锥曲线的有关元素计算.关系证明或范围的确定; (3)涉及与圆锥曲线平移与对称变换、最值或位置关系的问题. 近年来,高考中解析几何综合题的难度有所下降.随着高考的逐步完善,结合上述考题特点分析,预测今后高考的命题趋势是:将加强对于圆锥曲线的基本概念和性质的考查,加强对于分析和解决问题能力的考查.因此,教学中要注重对圆锥曲线定义、性质、以及圆锥曲线基本量之间关系的掌握和灵活应用. 范例选讲 例1. 中,已知,且内角满足. (1)建立适当的坐标系,求顶点A的轨迹方程; (2)若直线通过点B,且与顶点A的轨迹交于M、N两点,求的最小值. 讲解 (1)如图:取CB所在直线为x轴,CB的垂直平分线为y轴建立平面直角坐标系. Y A B x M N C O ∵ 由正弦定理可得:(定值) 根据椭圆的定义可知:顶点A的轨迹是以C、B为焦点的椭圆,方程为: . (2)解法一.由于M,N的变化是由直线l的运动引起的,所以,可以设法将表达成关于直线的斜率k的函数. 设过点B的直线的方程为:,点M、N的坐标分别为:. 则由消去,得. 显然,求出点M,N的坐标是不可取的.但很容易得到下面的式子: . 能否用来表示?这就涉及到椭圆的第二定义. 由(1)可知:椭圆的左准线为:.所以,根据定义有: 所以, 所以,当时,取得最小值,为6. 解法二.从另一个角度来思考这个问题,由于直线的标准参数方程中,的几何意义就是从定点出发的有向线段的数量,所以,我们可以考虑将转化为,同时利用直线的参数方程来解决问题. 设过点B的直线的方程为:(其中为参数,为直线的倾斜角),代入椭圆方程,得: . 所以,. 所以,. 根据椭圆定义:,.所以, 所以,当且仅当,即直线方程为时,取得最小值,为6. 点评:恰当运用定义是进行问题转化的重要手段. 例2.已知双曲线的左右两焦点分别为,点M是双曲线右支上不重合于顶点的一点,设,若. (1)求双曲线的离心率; (2)如果动点的坐标为,且有最小值15,求双曲线的方程. 讲解:(1)如果对三角公式较为熟悉,不难发现,实际上 . 所以,要求双曲线的离心率,只需考虑如何用来表达即可. 设双曲线的实轴长为,焦距为,点P为的内心,过P作PN垂直于点N,则 , 又 所以,= 所以,. (2) ∴的坐标适合方程, 又∵ (等号当且仅当时取得). ∴ , 双曲线的方程为:. 点评:(1)中,直接利用正、余弦定理也可得出结论. 高考真题 P M N 1.(1993年全国高考题)在面积为1的△PMN 中,tanM = ,tanN = -2.建立适当的坐标系,求出以M,N为焦点且过点P的椭圆方程. A L1 M N L2 B 2.(1998年全国高考)如图, 直线L1和L2相交于点M,L1^L2, 点N ÎL1.以A、B为端点的曲线C上的任一点到L2的距离与到点N的距离相等.若DAMN为锐角三角形,|AM|= ,|AN| = 3,且|BN|=6.建立适当的坐标系,求曲线段C的方程. 3.(2000全国理22)如图,已知梯形ABCD中,点E分有向线段所成的比为,双曲线过C、D、E三点,且以A、B为焦点.当时,求双曲线离心率的取值范围. [答案与提示:1.; 2.; 3..] Doc521资料分享网(D) – 资料分享我做主!- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中国 人民大学 附中 特级 教师 梁丽平 高考 数学 综合 能力 30 17 二次曲线
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文