2015年浙江省杭州市中考数学试卷(解析版).doc
《2015年浙江省杭州市中考数学试卷(解析版).doc》由会员分享,可在线阅读,更多相关《2015年浙江省杭州市中考数学试卷(解析版).doc(14页珍藏版)》请在咨信网上搜索。
2015年浙江省杭州市中考数学试卷解析 (本试卷满分120分,考试时间100分钟) 一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的. 1、(2015年浙江杭州3分)统计显示,2013年底杭州市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为【 】 A. 11.4×104 B. 1.14×104 C. 1.14×105 D. 0.114×106 【答案】C. 【考点】科学记数法. 【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 在确定n的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0). 因此, ∵11.4万=114 000一共6位,∴11.4万=114 000=1.14×105. 故选C. 2、(2015年浙江杭州3分)下列计算正确的是【 】 A. B. C. D. 【答案】C. 【考点】有理数的计算. 【分析】根据有理数的运算法则逐一计算作出判断: A. ,选项错误; B. ,选项错误; C. ,选项正确; D. ,选项错误. 故选C. 3、(2015年浙江杭州3分)下列图形是中心对称图形的是【 】 A. B. C. D. 【答案】A. 【考点】中心对称图形. 【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此, A、∵该图形旋转180°后能与原图形重合,∴该图形是中心对称图形; B、∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形; C、∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形; D、∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形. 故选A. 4、(2015年浙江杭州3分)下列各式的变形中,正确的是【 】 A. B. C. D. 【答案】A. 【考点】代数式的变形. 【分析】根据代数式的运算法则逐一计算作出判断: A. ,选项正确; B. ,选项错误; C. ,选项错误; D. ,选项错误. 故选A. 5、(2015年浙江杭州3分)圆内接四边形ABCD中,已知∠A=70°,则∠C=【 】 A. 20° B. 30° C. 70° D. 110° 【答案】D. 【考点】圆内接四边形的性质. 【分析】∵圆内接四边形ABCD中,已知∠A=70°, ∴根据圆内接四边形互补的性质,得∠C=110°. 故选D. 6、(2015年浙江杭州3分)若 (k是整数),则k=【 】 A. 6 B. 7 C.8 D. 9 【答案】D. 【考点】估计无理数的大小. 【分析】∵, ∴k=9. 故选D. 7、(2015年浙江杭州3分)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x公顷旱地改为林地,则可列方程【 】 A. B. C. D. 【答案】B. 【考点】由实际问题列方程. 【分析】根据题意,旱地改为林地后,旱地面积为公顷,林地面积为公顷,等量关系为“旱地占林地面积的20%”,即. 故选B. 8、(2015年浙江杭州3分)如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”),由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112µg/cm2;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM2.5浓度有关,其中正确的说法是【 】 A. ①②③ B. ①②④ C. ①③④ D. ②③④ 【答案】C. 【考点】折线统计图;中位数. 【分析】根据两个折线统计图给出的图形对各说法作出判断: ①18日的PM2.5浓度最低,原说法正确; ②这六天中PM2.5浓度按从小到大排列为:25,66,67,92,144,158,中位数是第3,4个数的平均数,为µg/cm2,原说法错误; ③这六天中有4天空气质量为“优良”,原说法正确; ④空气质量指数AQI与PM2.5浓度有关,原说法正确. ∴正确的说法是①③④. 故选C. 9、(2015年浙江杭州3分)如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为【 】 A. B. C. D. 【答案】B. 【考点】概率;正六边形的性质. 【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此, 如答图,∵正六边形的顶点,连接任意两点可得15条线段,其中6条的连长度为:AC、AE、BD、BF、CE、DF, ∴所求概率为. 故选B. 10、(2015年浙江杭州3分)设二次函数的图象与一次函数的图象交于点,若函数的图象与轴仅有一个交点,则【 】 A. B. C. D. 【答案】B. 【考点】一次函数与二次函数综合问题;曲线上点的坐标与方程的关系. 【分析】∵一次函数的图象经过点, ∴.∴. ∴. 又∵二次函数的图象与一次函数的图象交于点,函数的图象与轴仅有一个交点, ∴函数是二次函数,且它的顶点在轴上,即. ∴.. 令,得,即. 故选B. 二、认真填一填(本题有6个小题,每小题4分,共24分) 11、(2015年浙江杭州4分)数据1,2,3,5,5的众数是 ▲ ,平均数是 ▲ 【答案】5;3.2. 【考点】众数;平均数 【分析】众数是在一组数据中,出现次数最多的数据,这组数据中5出现三次,出现的次数最多,故这组数据的众数为5. 平均数是指在一组数据中所有数据之和再除以数据的个数,故这组数据的平均数是. 12. (2015年浙江杭州4分)分解因式: ▲ 【答案】. 【考点】提公因式法和应用公式法因式分解. 【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式. 因此, 先提取公因式后继续应用平方差公式分解即可:. 13、(2015年浙江杭州4分)函数,当y=0时,x= ▲ ;当时,y随x的增大而 ▲ (填写“增大”或“减小”) 【答案】;增大. 【考点】二次函数的性质. 【分析】函数,当y=0时,即,解得. ∵, ∴二次函数开口上,对称轴是,在对称轴右侧y随x的增大而增大. ∴当时,y随x的增大而增大. 14、(2015年浙江杭州4分)如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA为α度,则∠GFB为 ▲ _度(用关于α的代数式表示) 【答案】. 【考点】平角定义;平行的性质. 【分析】∵度,∴度. ∵CD平分∠ECB,∴度. ∵FG∥CD,∴度. 15、(2015年浙江杭州4分)在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP,若反比例函数的图象经过点Q,则= ▲ 【答案】或 【考点】反比例函数的性质;曲线上点的坐标与方程的关系;勾股定理;分类思想的应用. 【分析】∵点P(1,t)在反比例函数的图象上,∴.∴P(1,2). ∴OP=. ∵过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP, ∴Q或Q. ∵反比例函数的图象经过点Q, ∴当Q时,;Q时,. 16、(2015年浙江杭州4分)如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°,将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平行四边形,则CD= ▲ 【答案】或. 【考点】剪纸问题;多边形内角和定理;轴对称的性质;菱形、矩形的判定和性质;含30度角直角三角形的性质;相似三角形的判定和性质;分类思想和方程思想的应用. 【分析】∵四边形纸片ABCD中,∠A=∠C=90°,∠B=150°,∴∠C=30°. 如答图,根据题意对折、裁剪、铺平后可有两种情况得到平行四边形: 如答图1,剪痕BM、BN,过点N作NH⊥BM于点H, 易证四边形BMDN是菱形,且∠MBN=∠C=30°. 设BN=DN=,则NH=. 根据题意,得,∴BN=DN=2, NH=1. 易证四边形BHNC是矩形,∴BC=NH=1. ∴在中,CN=. ∴CD=. 如答图2,剪痕AE、CE,过点B作BH⊥CE于点H, 易证四边形BAEC是菱形,且∠BCH =30°. 设BC=CE =,则BH=. 根据题意,得,∴BC=CE =2, BH=1. 在中,CH=,∴EH=. 易证,∴,即. ∴. 综上所述,CD=或. 三、全面答一答(本题有7个小题,共66分) 解答应写出文字说明,证明过程或推演步骤. 17、(2015年浙江杭州6分)杭州市推行垃圾分类已经多年,但在厨余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾,如图是杭州市某一天收到的厨余垃圾的统计图. (1)试求出m的值;(2)杭州市那天共收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数. 【答案】解:(1). (2)∵, ∴其中混杂着的玻璃类垃圾约为1.8吨. 【考点】扇形统计图;用样本估计总体. 【分析】(1)由扇形统计图中的数据,根据频率之和等于1计算即可. (2)根据用样本估计总体的观点,用计算即可. 18、(2015年浙江杭州8分)如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M、N分别在AB、AC边上,AM=2MB,AN=2NC,求证:DM=DN. 【答案】证明:∵AM=2MB,AN=2NC,∴. 又∵AB=AC,∴. ∵AD平分∠BAC,∴. 又∵AD=AD,∴. ∴DM=DN. 【考点】全等三角形的判定和性质. 【分析】要证DM=DN只要即可,两三角形已有一条公共边,由AD平分∠BAC,可得,只要再有一角对应相等或即可,而易由AB=AC,AM=2MB,AN=2NC证得. 19、(2015年浙江杭州8分)如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”,如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′、B′分别是点A,B关于⊙O的反演点,求A′B′的长. 【答案】解:∵⊙O的半径为4,点A′、B′分别是点A,B关于⊙O的反演点,点B在⊙O上, OA=8, ∴,即. ∴.∴点B的反演点B′与点B重合. 如答图,设OA交⊙O于点M,连接B′M, ∵OM=OB′,∠BOA=60°,∴△OB′M是等边三角形. ∵,∴B′M⊥OM. ∴在中,由勾股定理得. 【考点】新定义;等边三角形的判定和性质;勾股定理. 【分析】先根据定义求出,再作辅助线:连接点B′与OA和⊙O的交点M,由已知∠BOA=60°判定△OB′M是等边三角形,从而在中,由勾股定理求得A′B′的长. 20、(2015年浙江杭州10分)设函数 (k是常数) (1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象; (2)根据图象,写出你发现的一条结论 (3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值. 【答案】解:(1)作图如答图: (2)函数 (k是常数)的图象都经过点(1,0).(答案不唯一) (3)∵, ∴将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3为. ∴当时,函数y3的最小值为. 【考点】开放型;二次函数的图象和性质;平移的性质. 【分析】(1)当时,函数为,据此作图. (2)答案不唯一,如: 函数 (k是常数)的图象都经过点; 函数 (k是常数)的图象总与轴交于(1,0); 当k取0和2时的函数时得到的两图象关于(0,2)成中心对称; 等等. (3)根据平移的性质,左右平移时,左减右加。上下平移时,下减上加,得到平移后的表达式,根据二次函数的性质求出最值. 21、(2015年浙江杭州10分)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度 (1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形,请列举出所有满足条件的三角形; (2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹). 【答案】解:(1)(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4). (2)由(1)可知,只有(2,3,4),即时满足a<b<c. 如答图的即为满足条件的三角形. 【考点】三角形三边关系;列举法的应用;尺规作图. 【分析】(1)应用列举法,根据三角形三边关系列举出所有满足条件的三角形. (2)首先判断满足条件的三角形只有一个:,再作图: ①作射线AB,且取AB=4; ②以点A为圆心,3为半径画弧;以点B为圆心,2为半径画弧,两弧交于点C; ③连接AC、BC. 则即为满足条件的三角形. 22、(2015年浙江杭州12分)如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E (1)若,AE=2,求EC的长 (2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P,问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由 【答案】解:(1)∵∠ACB=90°,DE⊥AC,∴DE∥BC. ∴. ∵,AE=2,∴,解得. (2)①若,此时线段CP1为△CFG1的斜边FG1上的中线.证明如下: ∵,∴. 又∵,∴. ∴. ∴. 又∵,∴. ∴. ∴线段CP1为△CFG1的斜边FG1上的中线. ②若,此时线段CP2为△CFG2的斜边FG2上的高线.证明如下: ∵, 又∵DE⊥AC,∴. ∴. ∴. ∴CP2⊥FG2. ∴线段CP2为△CFG2的斜边FG2上的高线. ③当CD为∠ACB的平分线时,CP既是△CFG的FG边上的高线又是中线. 【考点】平行线分线段成比例的性质;直角三角形两锐角的关系;等腰三角形的判定;分类思想的应用. 【分析】(1)证明DE∥BC,根据平行线分线段成比例的性质列式求解即可. (2)分,和CD为∠ACB的平分线三种情况讨论即可. 23、(2015年浙江杭州12分)方成同学看到一则材料,甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地,设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h,甲出发0.5小时与乙相遇,⋯⋯,请你帮助方成同学解决以下问题: (1)分别求出线段BC,CD所在直线的函数表达式; (2)当20<y<30时,求t的取值范围; (3)分别求出甲、乙行驶的路程S甲、S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象; (4)丙骑摩托车与乙同时出发,从N地沿同一条公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇. 【答案】解:(1)设线段BC所在直线的函数表达式为, ∵,∴,解得. ∴线段BC所在直线的函数表达式为. 设线段CD所在直线的函数表达式为, ∵,∴,解得. ∴线段BC所在直线的函数表达式为. (2)∵线段OA所在直线的函数表达式为,∴点A的纵坐标为20. 当时,即或, 解得或. ∴当时, t的取值范围为或. (3),.所画图形如答图: (4)当0时,, ∴丙距M地的路程与时间的函数关系式为. 联立,解得与图象交点的横坐标为, ∴丙出发后与甲相遇. 【考点】一次函数的图象和性质;待定系数法的应用;直线上点的坐标与方程的关系;解方程组和不等式组;分类思想的应用. 【分析】(1)应用待定系数法即可求得线段BC,CD所在直线的函数表达式. (2)求出点A的纵坐标,确定适用的函数,解不等式组求解即可. (3)求函数表达式画图即可. (4)求出与时间的函数关系式,与联立求解.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2015 浙江省 杭州市 中考 数学试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文