概率论与数理统计电子教案.doc
《概率论与数理统计电子教案.doc》由会员分享,可在线阅读,更多相关《概率论与数理统计电子教案.doc(218页珍藏版)》请在咨信网上搜索。
第一章 随机事件及其概率 概率论与数理统计是从数量化的角度来研究现实世界中一类不确定现象(随机现象)规律性的一门应用数学学科,本章介绍的随机事件与概率是概率论中最基本、最重要的概念之一. §1.1 随机事件 一、随机试验 1确定性现象:必然发生或必然不发生的现象。 在正常的大气压下,将纯净水加热到100℃时必然沸腾,向上抛一石子必然下落,异性电荷相互吸引,同性电荷相互排斥等 2随机现象:在一定条件下我们事先无法准确预知其结果的现象,称为随机现象. 掷一颗骰子,可能出现1,2,3,4,5,6点, 抛掷一枚均匀的硬币,会出现正面向上、反面向上两种不同的结果. 3随机现象的特点:人们通过长期实践并深入研究之后,发现这类现象在大量重复试验或观察下,它的结果却呈现出某种统计规律性.概率论与数理统计是研究随机现象统计规律性的一门学科. 4. 随机试验 为了对随机现象的统计规律性进行研究,就需要对随机现象进行重复观察, 我们把对随机现象的观察称为随机试验, 并简称为试验,记为. 5.随机试验具有下列特点: 1. 可重复性: 试验可以在相同的条件下重复进行; 2. 可观察性: 试验结果可观察,所有可能的结果是明确的; 3. 随机性(不确定性): 每次试验出现的结果事先不能准确预知. ,但可以肯定会出现所有可能结果中的一个. 二、随机事件 1.样本点:随机试验中的每一个可能出现的试验结果称为这个试验的一个 样本点,记作. 2样本空间:全体样本点组成的集合称为这个随机试验的样本空间,记为.(或).即 例1::投掷一枚硬币,观察正面,反面出现的情况, 则样本空间为. :将一枚硬币连抛两次,观察正面,反面出现的情况, 则样本空间为. :将一枚硬币连抛两次,观察正面H出现的次数, 则样本空间为. :记录某电话台在一分钟内接到的呼叫次数, 则样本空间为. :已知某物体长度在10与20之间,测量其长度, 则样本空间为. :在一大批灯泡中任取一只,测试其使用寿命, 则样本空间为. 注::1)在 中,虽然一分钟内接到电话的呼叫次数是有限的,不会非常大,但一般说来,人们从理论上很难定出一个次数的上限,为了方便,视上限为∞,这种处理方法在理论研究中经常被采用. 2)样本空间的元素是由试验的目的所确定的,如和中同是将一枚硬币连抛两次,由于试验的目的不一样,其样本空间也不一样. 3随机事件:我们称试验的样本空间的子集为的随机事件,简称事件,在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性.一般用,…等大写字母表示事件.设为一个事件,当且仅当试验中出现的样本点时,称事件在该次试验中发生. 如:在抛掷一枚均匀硬币的试验中,“正面向上”是一 个随机事件,可用{正面向上}表示.掷骰子,“出现偶数点”是一个随机事件,试验结果为2,4或6点, 可用B={2,4,6}表示. 注: 要判断一个事件是否在一次试验中发生,只有当该次试验有了结果以后才能知道. 1)基本事件 :仅含一个样本点的随机事件称为基本事件. 如:抛掷一颗骰子,观察出现的点数,那么“出现1点”、“出现2点”,...,“出现6 点”为该试验的基本事件. 2)必然事件:.样本空间本身也是的子集,它包含的所有样本点,在每次试验中必然发生,称为必然事件.即必然发生的事件. 如:“抛掷一颗骰子,出现的点数不超过6”为必然事件. 3)不可能事件:.空集也是的子集,它不包含任何样本点,在每次试验中都不可能发生,称为不可能事件.不可能发生的事件是不包含任何样本点的. 如:“掷一颗骰子,出现的点数大于6”是不可能事件. 三、事件间的关系与运算 研究原因:希望通过对简单事件的了解掌握较复杂的事件 研究规则:事件间的关系和运算应该按照集合之间的关系和运算来规定 事件间的关系及运算与集合的关系及运算是一致的. 1 子事件、包含关系 , 2相等事件:若事件A发生必然导致事件发生,且若事件发生必然导致事件发生, 即 A=B 注:事件与事件含有相同的样本点 例如:在投掷一颗骰子的试验中,事件“出现偶数点”与事件“出现2,4或6点”是相等事件。 3和事件或并事件 , 4、积事件或交事件 , . 5、事件的差 , . 注: 例如,在例1的中,若记,,则 , } 6、互斥或互不相容 . 事件A和随机B不能同时发生. 注:. 推广:设事件满足称事件 是两两互不相容的. 7对立事件或互逆事件 若事件和事件中有且仅有一个发生,即 则事件和事件为互逆事件或对立事件。记的对立事件为 注:互逆事件必为互斥事件,反之,互斥事件未必为互逆事件 事件的关系与运算可用图来直观的表示. 注: 事件的运算满足如下基本关系. ①, ② 若AB,则A∪B=B,A∩B=A. ③ A-B=A∩=A-A∩B,A∪B=A∪(B-A). 8、完备事件组:设是有限或可列个事件,若其满足 ① ②, 则称是样本空间的一个完备事件组或一个划分. 注:与构成一个完备事件组. 四、随机事件的运算规律 幂等律: 交换律: 结合律: 分配律: 德摩根De Morgan定律: 例2: 一名射手连续向某个目标射击三次,事件表示该射手第次射击 时击中目标(),试用表示下列各事件. (1)前两次射击中至少有一次击中目标; (2)第一次击中目标而第二次未击中目标; (3)三次射击中,只有第三次未击中目标; (4)三次射击中,恰好有一次击中目标; (5)三次射击中,至少有一次未击中目标; (6)三次射击都未击中目标; (7)三次射击中,至少两次击中目标; (8)三次射击中,至多一次击中目标 解:分别用表示(1),(2),…,(8)中所给出的事件. (1). (2)或 (3) (4) (4)或 (6) (7) (8) 备讲例2:甲,乙,丙三人各射一次靶,记“甲中靶” “乙中靶” “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: (2) “甲中靶而乙未中靶”: (3) “三人中只有丙未中靶”: (4) “三人中恰好有一人中靶”: (5)“ 三人中至少有一人中靶”: (6)“三人中至少有一人未中靶”: 或 (7)“三人中恰有兩人中靶”: (8)“三人中至少兩人中靶”: (9)“三人均未中靶”: (10)“三人中至多一人中靶”: (11)“三人中至多兩人中靶”: 或 注:用其他事件的运算来表示一个事件, 方法往往不惟一,如上例中的(6)和(11)实际上是同一事件,读者应学会用不同方法表达同一事件, 特别在解决具体问题时,往往要根据需要选择一种恰当的表示方法. 例3 如图所示电路中,=“灯亮”, 分别表示“开关Ⅰ,Ⅱ,Ⅲ闭合” , , 这是因为,如果 发生,即开关Ⅰ,Ⅱ同时闭 合,则整个电路接通,于是灯亮,即A发生,所以,同理 如果发生,即 或 中至少一个发生,则整个电路接通, 于是灯亮,即A发生,所以反之,如果A发生,即灯亮,则 或中至少有一个发生,所以由事件相等的定义, 课堂练习 1. 设当事件与同时发生时也发生, 则 ( C ) (A) 是的子事件; (B)或 (C) 是的子事件; (D) 是的子事件. 2. 设事件{甲种产品畅销, 乙种产品滞销}, 则的对立事件为 (D). (A) 甲种产品滞销,乙种产品畅销; (B) 甲种产品滞销; (C) 甲、乙两种产品均畅销; (D) 甲种产品滞销或者乙种产品畅销. §1.2 频率与概率 随机事件在一次随机试验中是否会发生,事先不能确定,但希望知道它发 生可能性的大小.这里先引入频率的概念,进而引出表征事件在一次试验中发生的可能性大小的数字度量———概率. 一、频率及其性质 1定义1在相同条件下重复进行了次试验,如果事件在这次试验中 发生了次,则称比值为事件发生的频率,记作 它具有下述性质: 非负性 规范性 有限可加性 频率的大小表示了在次试验中事件发生的频繁程度.频率大,事件发生就频繁,在一次试验中发生的可能性就大,反之亦然.因而直观的想法是用频率来描述在一次试验中发生的可能性的大小. 2 频率的稳定性 随机事件在相同条件下重复多次时,事件发生的频率在一个固定的数值附近摆动,随机试验次数的增加更加明显,事件的频率稳定在数值,说明了数值可以用来刻划事件发生可能性的大小,可以规定为事件的概率 二、概率的统计定义 定义2 对任意事件,在相同的条件下重复进行次试验,事件发生次,从而事件发生的频率,随着试验次数的增大而稳定地在某个常数附近摆动,那么称为事件的概率 上述定义称为随机事件概率的统计定义.在实际应用时,往往可用试验次数足够大时的频率来估计概率的大小,且随着试验次数的增加,估计的精度会越来越高.在实际中,我们不可能对每一个事件都做大量的试验,然后求得事件发生的频率,用以表征事件发生的概率.为此给出概率的严格的公理化定义. 三、概率的公理化定义 定义3 设是随机试验,是它的样本空间,对的每一个事件赋予一 个实数,记为,若满足下列三个条件: (1)非负性 对每一个事件,有; (2)规范性 对于必然事件,有 (3)可列可加性 设是两两互不相容的事件,有则称为事件发生的概率. 四、概率的性质 性质1 性质2.有限可加性:设是两两互不相容的事件,则有 即若则 性质3.对任一随机事件,有 性质4.设是两个事件,若 则, 证明 因为,从而有),且.由性质2得 所以 由于,因此 性质5:对任意事件. 性质6(减法公式):对事件,则 证明 由于,而根据性质4可得 性质7:对任意两个事件,有 推广: 证明:因为且, 由性质2及性质4得 一般地,设为n个随机事件,则有 此公式称为概率的一般加法公式。 例1:设 求(1) ; (2) ; (3) ; (4) . 解: (1) (2); (3) (4) 例2:设,, 求事件全不发生的概率。 解: = 因为,所以,而所以 练习:设事件A、B的概率分别为1/3、1/2,求在下列三种情况下的值 (1)A与B互不相容 (2) (3)P(AB)=1/8 解:(1)由已知得=P(B)=1/2 (2)=P(B)-P(A)=1/6 (3)=P(B-A)=P(B-AB)=P(B)-P(AB)=3/8 §1.3 古典概型与几何概型 一、古典概型 我们称具有下列两个特征的随机试验模型为古典概型. (1)随机试验只有有限个可能的结果; (2)每一个结果发生的可能性大小相同.古典概型又称为等可能概型. 设试验是古典概型,样本空间为,则基本事件, ,…,两两互不相容,且 由于及,因此 若事件包含个基本事件,即 其中是中某个不同的数,则有 即 二、 计算古典概率的方法 1基本计数原理: (1). 加法原理:设完成一件事有种方式,其中第一种方式有种方法,第二种方式有种方法,……,第种方式有种方法,无论通过哪种方法都可以完成这件事,则完成这件事的方法总数为. (2). 乘法原理:设完成一件事有个步骤,其中第一个步骤有种方法,第二个步骤有种方法,……,第个步骤有种方法;完成该件事必须通过每一步骤才算完成,则完成这件事的方法总数为 . 2. 排列组合方法 (1) 排列公式:从n个不同元素中任取k个的不同排列总数为 (2) 组合公式;从n个不同元素中任取k个的不同组合总数为 例1 :将一枚硬币抛掷三次,观察正面H,反面T出现的情况。 (1) 设事件 为“恰有一次出现正面”,求 (2)设事件为“第一次出现正面”, 求, (3)设事件 为“至少有一次出现正面” ,求 解: 中包含有限个元素,且每个基本事件发生的可能性相同,属于古典概型。样本空间 , (1) , (2) , (3) 或 例2: 袋中装有5只白球3只黑球,分别按下列方式抽取2只: (1)第一次取一球不放回袋中,第二次从剩余的球中再取一球.这种取球方 式叫做不放回抽样. (2)第一次取一只球,观察其颜色后放回袋中,搅匀后再取一球.这种取球 方式叫做放回抽样. (3)一次任取2只.设=“所取2只球均为白球”,=“所取2只球中一白一黑”,求. 解(1)不放回抽样. 第一次从8只球中抽取一只,不再放回,故第二次从7只球中抽取1只,因此基本事件总数为.因为第一次有5只白球供抽取,第二次有4只白球供抽取,所以事件中包含的基本事件数为, 所以 从5只白球中任取一只共有5种方法,从3只黑球中任取一只共有3种方法,第一次取得白球第二次取得黑球及第一次取得黑球第二次取得白球构成事件,共有种方法, 故 (2)放回抽样. 因为每次都是从8只球中抽取,故由乘法原理,基本事件总数的,又由于两次都是从5只白球中抽取,故构成的基本事件数为, 因此 事件包含的基本事件数:第一次取得白球第二次取得黑球有个基本事件,第一次取得黑球第二次取得白球有个基本事件,故 (3)一次任取2只 因为不考虑次序,将从8只球中抽取2只的可能组合作为基本事件, 总数为·事件发生的基本事件数为从5只白球中任取2只的组合, 有个.故 事件发生的基本事件数为从5只白球中任取1只,从3只黑球中任取一 只构成的组合,共有个,故 例3 一批产品共10件,其中有3件次品,今从中随机取4件,问其中恰有2件为次品的概率是多少? 解:设={从中随机地取4件,恰有2件为次品} 10件产品中随机地取4件共有种取法,每种取法为一基本事件且每个 基本事件发生是等可能的,又因在3件次品中取2件的取法有 种,在7件正品中取2件正品的取法有种,由乘法原理,在4件产品中有2件次品,2件正品的取法共有·种,所以 例4:有只球,随机放在个盒子中().试求下列各事件的概率. (1)每个盒子中至多有一只球; (2)某指定的个盒子中各有一只球; (3)恰有个盒中各有一球. 解:只球放入个盒子里的方法共有种,即为基本事件总数. (1)设=“每个盒子中至多有一只球”. 因为每个盒子中至多放一只球,共有种不同的放法.即中包含的基本事件数为.所以 (2)设=“某指定的个盒子中各有一只球”. 由于只球在指定的个盒中各放一只,共有种放法,故中包含的基本事件数为.所以 (3)设=“恰有个盒中各有一只球”. 由于在个盒中选取个盒子的选法有种,而对于每一种选法选出的个盒,其中各放一只球的放法有种.所以包含的基本事件数为 所以 例如,假设每个人的生日在一年365天中的任一天是等可能的,即都等于 ,那么随机选取个人,他们的生日各不相同的概率 因而,个人中至少有两人生日相同的概率为 如果,可算出,即在一个50人的班级里,“至少有两个人的生日相同”这一事件发生的概率与1差别很小. 例5: 从的100个整数中任取一个,试求取到的整数既不能被6整除,又不能8整除的概率. 解:设=“取到的数能被6整除”,=“取到的数能被8整除”, =“取到的数既不能被6整除,也不能被8整除”. 则, 对,设100个整数中有个能被6整除,则,所以. 即中有16个基本事件, 同理中含有12个基本事件,则 设既能被6整除又能被8整除即能被24整除的数为个,则 所以.即中含有4个基本事件,则 故 三、几何概型 古典概型只考虑了有限等可能结果的随机试验的概率模型. 将古典概型中的有限性推广到无限性,而保留等可能性,就得到几何概型。 几何概型特点: 有一个可度量的几何图形,试验看成在中随机地投掷一点,事件就是所投掷的点落在中的可度量图形中 这里我们研究样本空间为一线段、平面区域或空间立体等的等可能随机试验的概率模型—几何概型. 例:某路公共汽车每发出一辆车,求乘客到达站点后,等待时间不超过的概率. 如果记此事件为,乘客到达站点的时刻可视为向时间段投掷一随机点.从而向时间段内投点对应于向线段上投点. 事件表示“等待时间不超过, 而样本空间Ω=,这里所投掷的点落在线段上任一点的可能性都一样或说具有等可能性.我们理解这种等可能性的含义,就是点落在时间段内的可能性与该线段的长度成正比,与该线段的位置无关.因此事件A的概率决定于线段[2,5]与[0,5]的长度比,即 几何概率的定义:如果一个随机试验相当于从直线、平面或空间的某一区域Ω任取一点,而所取的点落在Ω中任意两个度量(长度、面积、体积)相等的子区域内的可能性是一样的,则称此试验模型为几何概型,对于任意有度量的子区域,,定义事件“任取一点落在区域内”发生的概率为 例6:甲乙二人相约定7:00-8:00在预定地点会面,先到的人要等候另一人20分钟后,方可离开,假定他们在指定的一小时内任意时刻到达.求二人能会面的概率。 解 设甲乙二人到达预定地点的时刻分别为及(分钟), 则 两人到达时间的一切可能结果对应于边长为60的正方形里所有点 ={二人会面} 练习:1 某人午觉醒来,发觉表停了,他打开收音机,想听电 台报时, 求他等待的时间不超过 10 分钟的概率。 (1/6) 2在线段上任意取两个点 B、C,在 B、C 处折断此线段而得三折线,求此三折线能构成三角形的概率。 解:设A={三折线能构成三角形}设AD=1,AB=x,BC=y,CD=1-x-y, 则样本空间 A={两边之和大于第三边}= §1.4 条件概率 一.条件概率 例1:两台机器加工同一种产品,共100件,第一台机器加工合格品数为35 件,次品数为5件,第二台机器加工合格品数为50件,次品数为10件.若从100 件产品中任取一件产品,已知取到的是第一台机器加工的产品,问它是合格品的概率是多少. 解 令A=“取到产品是第一台机器加工的”,B=“取到产品为合格品”,于是所求概率是事件A发生的条件下事件B发生的概率,所以称它为A发生的条件下B发生的条件概率,并记作 可以用古典概型计算.因为取到的是第一台机器加工的,又已知第 一台机器加工40件产品,其中35件是合格品,所以 . 另外,由于AB表示事件“取到的第一台机器加工的,并且是合格品”,而在 100件产品中是第一台机器加工的又是合格品的产品为35件,所以 ,而,从而有 定义: 设是两个事件,且,称为在事件A发生的条件 下,事件B发生的条件概率,记为,即 同样,可以在的条件下,定义在事件B发生的条件下,事件A发生 的条件概率为 条件概率P(· A)满足概率公理化定义中的三个基本性质: 1.非负性 对任一事件, 2. 规范性: 3. 可列可加性:设两两互斥 注:, 计算条件概率有两种方法: (1)在样本空间Ω中,先求,再按定义计算 (2)在缩减的样本空间中求事件B的概率,可得到 例2:一袋中有10只球,其中3只黑球,7只白球,依次从袋中不放回取 两球. (1)已知第一次取出的是黑球,求第二次取出的仍是黑球的概率; (2)已知第二次取出的是黑球,求第一次取出的也是黑球的概率. 解 记=“第次取到黑球”() (1)可以在缩减的样本空间上计算. 因为已发生,即第一次取得的是黑球,第二次取球时,所有可取的球只有 9只.中所含的基本事件数为9,其中黑球只剩下2只,所以. (2)由于第二次取球发生在第一次取球之后,故缩减的样本空间的结构 并不直观,因此,直接在Ω中用定义计算 因为 又由且与互不相容 故 例3:某种动物由出生活到20岁的概率为0.8,活到25岁的概率为0.4,这种动物已经活到20岁时再活到25岁的概率是多少? 解 记=“该动物活到20岁”,=“该动物活到25岁”,显然,则 .又=0.8, =0.4, =0.4. 所以 二、乘法公式 1定理1(乘法公式) 设则有 设则有 它表明,两个事件同时发生的概率等于其中一个事件发生的概率与另一事件在前一事件发生下的条件概率的乘积. 2、推广:三个事件的乘法公式:设为三个事件,且 3. 多个事件乘法公式的推广: 设为个事件,当 时,有 证明:因, 故 又= 例4:袋中有个白球和个黑球,随机取出一个,然后放回,并同时再放进与取出的球同色的一只球,,再取第二只,,这样连续去3次。问取出的3个球中头两个是黑球,第三个是白球的概率是多少? 例 5: 设某光学仪器厂制造的透镜,第一次落 下时打破的概率为 1/2 ,若第一次落下未打破,第二次落下打破的概率为 7/10 ,若前两次落下未打破,第三次落下打破的概率为 9/10 。求透镜落下三次而未打破的概率。 解:以表示事件“透镜第次落下打破”,以表示事件“透镜落下三次而未打破”,有: 三、全概率公式与贝叶斯公式 全概率公式是概率论中的一个基本公式。它使一个复杂事件的概率计算问题,可化为在不同情况或不同原因或不同途径下发生的简单事件的概率的求和问题。 例6:某工厂有甲、乙、丙三台机器,它们的产量分别占总产量的0.25,0.35,0.40,而它们的产品中的次品率分别为0.05,0.04,0.02. (1)从所有产品中随机取一件,求所取产品为次品的概率; (2)从所有产品中随机取一件,若已知取到的是次品,问此次品分别是由 甲、乙、丙三台机器生产的概率是多少? 解:1)设=“取出的产品为次品” 又设=“所取产品来自甲台”,=“所取产品来自乙台”, =“所取产品来自丙台”. 由于 ,两两互不相容,所以且 也两两互不相容,于是 又已知,, 故所求概率 , 定理3(全概率公式):设随机试验E的样本空间为Ω,为的任意事件, 是Ω的一个完备事件组,(即且两两互不相容),且,则 全概率公式说明,在复杂情况下直接计算不易时,可根据具体情况构 造一完备事件组,使事件发生的概率是各事件)发生的条件下引起事件发生的概率的总和. 若已经观察到一个事件已经发生,再来研究事件发生的各种原因、情况或 途径的可能性的大小,就需要给出贝叶斯公式. 定理4(贝叶斯公式) 设为一完备事件组,且.则对任一事件,,有 例7:已知自然人患有某种疾病的概率为0.005,据以往记录,某种诊断该 疾病的试验具有如下效果,被诊断患有该疾病的人试验反应为阳性的概率为 0.95,被诊断不患有该疾病的人试验反应为阳性的概率为0.06,在普查中发现 某人试验反应为阳性,问他确实患有该疾病的概率是多少? 解 设事件=“试验反应为阳性”,“被诊断者患有此疾病”, 则=“被诊断者不患有此疾病”. 由已知,, 由全概率公式 再由贝叶斯公式,所求概率 例8:玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残次品的概率相应 地为0.8,0.1和0.1.一顾客欲买一箱玻璃杯,在购买时,顾客随机地查看4只, 若无残次品,则买下该箱玻璃杯,否则退回.试求: (1)顾客买下该箱玻璃杯的概率; (2)在顾客买下的一箱玻璃杯中,确实没有残次品的概率. 解 设=“顾客买下该箱玻璃杯” “箱中恰有只残次品”显然, 为Ω的完备事件组,由题意, (1)由全概率公式得 (2)由贝叶斯公式 练习1:设有五个坛子,大号坛子两个,各装两个白球一个黑球,中号坛子两个,各装三个白球一个黑球,小号坛子一个,装有十个黑球。如任选一个坛子,从中取出一球,问这球是黑球的概率是多少? 2:对以往的数据分析结果表明当机器调整得良好时,产品的合格率为 90% , 而当机器发生某一故障时,其合格率为 30% 。每天早上机器开动时,机器调整良好的概率为 75% 。已知某天早上第一件产品是合格品,试求机器调整得良好的概率是多少? 解:=“产品合格”,=“机器调整得良好 ”“机器发生某一故障” §1.5 事件的独立性与伯努利概型 一两个事件的独立性 定义1:若两事件,满足成立则称事件,相互独立, 或称,独立. 注: (1)两事件互不相容与相互独立是完全不同的两个概念,它们分别从两个 不同的角度表达了两事件间的某种联系,互不相容是表述在一次随机试验中两 事件不能同时发生,而相互独立是表述在一次随机试验中一事件是否发生与另 一事件是否发生互无影响. (2) 当,时, ,相互独立与,互不相容不能同时成立. 但与既相互独立又互不相容. 证明:, 由于AB =Φ,所以但是,由题设 这表明,事件 A 与 B 不相互独立 所以当,时, ,相互独立与,互不相容不能同时成立. 定理1:设,是两事件,若,相互独立,且则 .反之,或则相互独立. 证明 若相互独立,则 当时,有 反之若则 故,相互独立 定理2 证:由故 注意:在实际应用中,对于事件的独立性,我们往往不是根据定义来判断,而是根据实际意义来加以判断的。具体的说,题目一般把独立性作为条件告诉我们,要求直接应用定义中的公式进行计算。 例1:从一副不含大小王的扑克牌中任取一张,记“抽到”,“抽到的牌是黑色的”,判断事件是否独立? 解:利用定义判断,由 得到 故事相互独立. 例2:甲乙二人向同一目标射击,甲击中目标的概率为0.2,乙击中目标的概率为0.5.试计算目标被击中的概率. 解 : 设表示“甲击中目标”,表示“乙击中目标”, 则, 二、有限个事件的独立性 定义2 设是三个事件,如果满足等式 . 则称事件相互独立. 定义3 设是个事件,如果其中任意2个,任意3个,…,任意个事件之积的概率,都等于各事件的概率之积,则称事件相互独立. 另外,称无穷多个事件相互独立,是指其中任意有限多个事 件都相互独立. 或 定义4设是个事件,若其中任意两个事件均相互独立,则 称两两相互独立. 可见个事件相互独立,可推得个事件两两相互独立,反之未必. 多个相互独立事件具有如下性质: 性质1 若事件相互独立,则其中任意个事件也 相互独立. 性质2 若事件相互独立,则将中任意个事件换成它们的对立事件,所得的个事件仍相互独立. 特别是,若相互独立,则也相互独立. 利用多个事件的独立性,可以简化概率的计算. (1)计算个相互独立的事件 的积的概率,可简化为 (2)计算个相互独立的事件 的和的概率,可简化为 证明: 例3 一个人看管三台机床,设各台机床在任一时刻正常工作的概率分别 为0.9,0.8,0.85,求在任一时刻, (1)三台机床都正常工作的概率; (2)三台机床中至少有一台正常工作的概率. 解:三台机床工作正常与否是相互独立的, 记 “第台机床正常工作”(),则 (1)所求概率为 (2)所求概率为 例4 在图1-4所示的开关电路中,开关Ⅰ, Ⅱ,Ⅲ,Ⅳ的开(或关)的概率均独立地等于 求事件“灯亮”的概率. 解:设 分别表示开关Ⅰ,Ⅱ,Ⅲ,Ⅳ关闭,记=“灯亮”, 则,故所求概率为 三、伯努利概型 在概率论中,只考虑两个可能结果的随机试验称为伯努利试验.为方便起见,将两个可能结果说成事件发生或事件不发生,记 将伯努利试验在相同条件下独立地重复进行次,称这一串重复的独立试 验为重伯努利试验,或简称为伯努利概型.重伯努利试验是一种很重要的数学模型,在实际问题中应用广泛,特点是事件在每次试验中发生的概率均为,且不受其他各次试验中是否发生的影响.对于伯努利概型,主要研究次试验中事件发生次的概率. 定理3(伯努利定理) 设在一次试验中,事件A发生的概率为则在重伯努利试验中,事件恰好发生次的概率为 证明 在重伯努利试验中,由于各次试验是相互独立进行的,因此事件 在指定的次试验中发生,其余次试验中均不发生(比如在前次试验中发生,在后次试验中均不发生)的概率为 由于这样的指定方式共有种,根据概率的加法公式可得.在次试验中发 生次的概率为 定理4:设在一次试验中,事件发生的概率为,则在伯努利试验序列中,事件在第k次试验中才首次发生的概率为 证明 “事件在第次试验中首次发生”等价于“事件在前次试 验中均不发生而第次试验中发生”,故所求的概率 例5 一袋中装有10只球,其中3只黑球,7只白球,每次从中随意取出一 球,取后放回. (1)如果共取10次,求10次中恰好3次取到黑球的概率及10次中能取到黑球的概率; (2)如果未取到黑球就一直取下去,直到取到黑球为止,求恰好要取3次的 概率及至少要取3次的概率. 解:设“第i次取到黑球”,则 (1)设=“10次中能取到黑球”, “10次中恰好取到k次黑球”,,于是10次中恰好3次取到黑球的概率 10次中能取到黑球的概率 (2)设=“恰好要取3次”=“至少要取3次”, 则所求概率为 例6 设在独立重复试验中每次事件A发生的概率为0.5,问最少需要进行 多少次试验,才能使事件A至少发生一次的概率不小于0.9? 解:设最少需要进行次独立重复试验,则在次试验中事件至少发生 一次的概率为解得所以 练习 1三人独立地去破译一份密码, 已知每个人能译出的概率分别为1/5,1/3,1/4。问三人中至少有一人能将密码译出的概率是多少? 解:将三人分别编号为1, 2, 3,记 = {第i个人破译出密码} , 所求为 已知 ,,且相互独立, 2一大批产品的次品率为0.05,现从中取出10件.试求下列事件的概率: B={ 取出的10件产品中恰有4件次品 } C={ 取出的10件产品中至少有2件次品 } D={ 取出的10件产品中没有次品 } 解: 取10件产品可看作是一10重贝努里试验 第二章 随机变量及其分布 在随机试验中,人们除对某些特定事件发生的概率感兴趣外,往往还关心某个与随机试验的结果相联系的变量. 由于这一变量的取值依赖于随机试验结果,因而被称为随机变量. 与普通的变量不同,对于随机变量,人们无法事先预知其确切取值,但可以研究其取值的统计规律性. 本章将介绍两类随机变量及描述随机变量统计规律性的分布. §2.1 随机变量 一、随机变量概念的引入 为全面研究随机试验的结果, 揭示随机现象的统计规律性, 需将随机试验的结果数量化,即把随机试验的结果与实数对应起来. 1. 在有些随机试验中, 试验的结果本身就由数量来表示. 例如: 在掷骰子试验中,结果可用1,2,3,4,5,6来表示 2. 在另一些随机试验中, 试验结果看起来与数量无关,但可以指定一个数量来表示. 例如: 掷硬币试验,其结果是用汉字“正面”和“反面”来表示的,可规定: 用1表示 “正面朝上” 用 0 表示“反面朝上” 二、随机变量的定义 1定义 设随机试验的样本空间为, 对每个,都有一个实数与之对应,则称为随机变量.简记为. 随机变量通常用英文大写字母或希腊字母等表示。 随机变量的取值一般用小写字母等表示。 2随机变量的特征 1) 它是一个变量, 2) 它的取值随试验结果而改变 3)随机变量在某一范围内取值,表示一个随机事件,具有一定的概率 三、引入随机变量的意义 随机变量的引入,使得随机试验中的各种事件可通过随机变量的关系式表达出来.由此可见,随机事件这个概念实际上是包容在随机变量这个更广的概念内.也可以说,随机事件是从静态的观点来研究随机现象,而随机变量则以动态的观点来研究之.其关系类似高等数学中常量与变量的关系. 随机变量概念的产生是概率论发展史上的重大事件. 引入随机变量后,对随机现象统计规律的研究,就由对事件及事件概率的研究转化为随机变量及其取值规律的研究,使人们可利用数学分析的方法对随机试验的结果进行广泛而深入的研究. 四、随机变量的类型 随机变量因其取值方式不同, 通常分为离散型和非离散型两类. 而非离散型随机变量中最重要的是连续型随机变量. 离散型:随机变量的所有取值是有限个或可列个 连续性:随即变量的取值是某个区间或整个数轴 §2.2离散型随机变量及其概率分布 一.离散型随机变量的概率分布 1、定义:如果随机变量的取值是有限个或可列无穷个,则称为离散型随机变量. 2、定义(概率分布) 设离散型随机变量的所有可能取值为 , 取各个可能值的概率,即事件的概率为 则称其为离散型随机变量的概率分布或分布律. 常用表格形式来表示的概率分布: 注:离散型随机变量可完全由其分布律来刻划.即离散型随机变量可完全由它 的可能取值以及取这些值的概率唯一确定. 离散型随机变量分布律的性质: 例1 一箱中装有6个产品,其中有2个是二等品,现从中随机地取出3个, 试求取出的二等品个数的概率分布. 解: 随机变量的可能取值是0,1,2,在6个产品中任取3个,共种取法,故 , , . 所以,的概率分布为 加例:设随机变量的分布律为 解:由随机变量的性质,得 该级数为等比级数,故有 所以 二、常用离散型随机变量的分布 1 0-1 分布或两点分布 或 伯努利分布. 如果随机变量的分布律为 或 则称随机变量 X 服从参数为的 0-1 分布或两点分布 或 2.二项分布 如果随机变量的分布律为 注:(1) (2) 显然,当时 例2 射手射击一枪命中的概率是,求射手射击6枪中恰好命中枪的概率. 解:我们将射手射击一枪看成一次试验,独立射击6枪相当于做6重伯努利 试验.记为陆次射击命中的次数,则是一个随机变量,且 因此 例3:某人进行射击,每次射击的命中率为0.001,独立射击5000次,求命中一次以上的概率. 解:将一次射击看成一次试验,设击中的次数为X,则 的概率分布为 于是所求概率 加例:一张考卷上有5道选择题,每道题列出4个可能答案,其中只有一个答案是正确的.某学生靠猜测至少能答对4道题的概率是多少? 解:每答一道题相当于做一次贝努利试验, ,则答5道题相当于做5重贝努里试验. 设表示学生靠猜测能答对的题数, 3泊松分布: 如果随机变量 X 的分布律为 则称随机变量 X 服从参数为λ的泊松分布 注: (1) (2) 泊松分布的应用 (1)泊松分布是概率论中最重要的几个分布之一. 实际问题中许多随机现象都服从或近似服从泊松分布. 泊松分布是概率论中重要的分布之一- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 电子 教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文