中国人民大学附中特级教师梁丽平高考数学综合能力题30讲第10讲不等式的解法.doc
《中国人民大学附中特级教师梁丽平高考数学综合能力题30讲第10讲不等式的解法.doc》由会员分享,可在线阅读,更多相关《中国人民大学附中特级教师梁丽平高考数学综合能力题30讲第10讲不等式的解法.doc(5页珍藏版)》请在咨信网上搜索。
Doc521资料分享网(D) – 资料分享我做主! 数学高考综合能力题选讲10 不等式的解法 100080 北京中国人民大学附中 梁丽平 题型预测 不等式具有联系广泛,应用广泛,变换灵活的特点.是中学数学的重点内容,也是学习高等数学的基础知识和重要工具,是高考的考察重点之一,在高考数学试题中占有相当大的比重.关于不等式的解法,应该在熟练掌握分式不等式、无理不等式、含绝对值的不等式、指数不等式和对数不等式等的解法的同时,注意对含参数的不等式须经讨论求解的问题.同时,还需注意不等式的工具作用,也即不等式与其它知识的综合问题. 范例选讲 例1 解关于x的不等式:. 讲解:解不等式实质上就是等价变形,利用对数函数的单调性,我们不难得到:原不等式等价于 ① 即 . 由于,所以,所以,上述不等式等价于 ② 解答这个含参数的不等式组,必然需要分类讨论,此时,分类的标准的确定就成了解答的关键.如何确定这一标准? 首先,我们可以从解不等式入手,不难看到是一个分界点,这可以看作是本题分类讨论的第一层次;其次,要解上述不等式组,从两个不等式取交集的角度,必然需要考虑到,,2这三个数之间的大小关系,这应该是本题分类讨论的第二层次.但是,在本题的条件及第一分类标准之下,这三个数的大小关系已经确定,所以,我们只需考虑以为分界点. (1)当时,不等式组②等价于 此时,由于,所以 . 从而 . (2)当时,不等式组②等价于 所以 . (3)当时,不等式组②等价于 此时,由于,所以,. 综上可知:当时,原不等式的解集为;当时,原不等式的解集为;当时,原不等式的解集为. 如果将本题中的条件去掉,则在将原不等式等价转化为不等式组①后,就应该开始确定分类标准.从解不等式和入手,可知,是两个分界点,另外,从解不等式组的角度,即不等式取交集的角度,可以看出需要比较,,1,2这四个数的大小关系,为了找到分界点,可以令=,解得:,于是,我们得到了此题分类讨论的3个界点:0,1,2.从不重不漏的原则出发,我们可以画出如下数轴,并标出0,1,2三个点,以此把数轴分成,,,四个区间及三个点. 下面只需在各区间及各界点展开讨论即可.结论如下: 当时,原不等式的解集为; 当时,原不等式的解集为; 当时,原不等式的解集为; 当时,原不等式的解集为; 当时,原不等式的解集为. 点评:解含参数的不等式时,关键在于分类标准的确定.函数单调性的变化常常作为确定分类标准的依据.分类需要不重不漏,尤其注意不要忽略参数在分界点的取值. 例2 设函数, (1)当时,解不等式; (2)求的取值范围,使得函数在上为单调函数. 讲解:(1)时,可化为:,等价于: ① 或 ② 解①得 ,解②得 . 所以,原不等式的解集为 . (2)任取,且,则 要使函数在上为单调函数,需且只需: 恒成立,(或恒成立). 因此,只要求出在条件“,且”之下的最大、最小值即可.为了探求这个代数式的最值,我们可以考虑极端情况,如:,容易知道,此时;若考虑,则不难看出,此时,至此我们可以看出:要使得函数为单调函数,只需. 事实上,当时,由于恒成立,所以,.所以,在条件“,且”之下,必有:. 所以,在区间上单调递减. 当时,由(1)可以看出:特例的情况下,存在.由此可以猜想:函数在区间上不是单调函数.为了说明这一点,只需找到,使得即可.简便起见,不妨取,此时,可求得,也即:,所以,在区间上不是单调函数. 点评:本题是函数、不等式型综合问题,注意:不等式解区间的端点往往与方程的解相关(如(1)中. 高考真题 1. (1991年全国高考)已知为自然数,实数,解关于x的不等式: . 2. (2000年全国高考)设函数,其中a>0. (I)解不等式f(x)≤1; (II)求a的取值范围,使函数f(x)在区间[0,+∞]上是单调函数. [答案与提示:1.当为奇数时,不等式的解集为;当为偶数时,解集为. 2.(I)0<a<1时,所给不等式的解集为,当a≥1时,所给不等式的解集为{x|x≥0};(II)当且仅当a≥1时,函数f(x )在区间[0,+∞]上是单调函数.] Doc521资料分享网(D) – 资料分享我做主!- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中国 人民大学 附中 特级 教师 梁丽平 高考 数学 综合 能力 30 10 不等式 解法
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文