高等数学教案7-1.DOC
《高等数学教案7-1.DOC》由会员分享,可在线阅读,更多相关《高等数学教案7-1.DOC(9页珍藏版)》请在咨信网上搜索。
§7.2 向量及其加减法 向量与数的乘法 §7. 1 向量及其线性运算 一、向量概念 向量: 在研究力学、物理学以及其他应用科学时, 常会遇到这样一类量, 它们既有大小, 又有方向. 例如力、力矩、位移、速度、加速度等, 这一类量叫做向量. 在数学上, 用一条有方向的线段(称为有向线段)来表示向量. 有向线段的长度表示向量的大小, 有向线段的方向表示向量的方向. 向量的符号: 以A为起点、B为终点的有向线段所表示的向量记作. 向量可用粗体字母表示, 也可用上加箭头书写体字母表示, 例如, a、r、v、F或、、、. 自由向量: 由于一切向量的共性是它们都有大小和方向, 所以在数学上我们只研究与起点无关的向量, 并称这种向量为自由向量, 简称向量. 因此, 如果向量a和b的大小相等, 且方向相同, 则说向量a和b是相等的, 记为a = b. 相等的向量经过平移后可以完全重合. 向量的模: 向量的大小叫做向量的模. 向量a、、的模分别记为|a|、、. 单位向量: 模等于1的向量叫做单位向量. 零向量: 模等于0的向量叫做零向量, 记作0或. 零向量的起点与终点重合, 它的方向可以看作是任意的. 向量的平行: 两个非零向量如果它们的方向相同或相反, 就称这两个向量平行. 向量a与b平行, 记作a // b. 零向量认为是与任何向量都平行. 当两个平行向量的起点放在同一点时, 它们的终点和公共的起点在一条直线上. 因此, 两向量平行又称两向量共线. 类似还有共面的概念. 设有k(k³3)个向量, 当把它们的起点放在同一点时, 如果k个终点和公共起点在一个平面上, 就称这k个向量共面. 二、向量的线性运算 1.向量的加法 向量的加法: 设有两个向量a与b, 平移向量使b的起点与a的终点重合, 此时从a的起点到b的终点的向量c称为向量a与b的和, 记作a+b, 即c=a+b . 三角形法则: 上述作出两向量之和的方法叫做向量加法的三角形法则. 平行四边形法则: 当向量a与b不平行时, 平移向量使a与b的起点重合, 以a、b为邻边作一平行四边形, 从公共起点到对角的向量等于向量a与b的和a+b. A B C A B C D 向量的加法的运算规律: (1)交换律a+b=b+a; (2)结合律(a+b)+c=a+(b+c). 由于向量的加法符合交换律与结合律, 故n个向量a1, a2, × × ×, an(n ³3)相加可写成 a1+a2+ × × ×+an, 并按向量相加的三角形法则, 可得n个向量相加的法则如下: 使前一向量的终点作为次一向量的起点, 相继作向量a1, a2, × × ×, an, 再以第一向量的起点为起点, 最后一向量的终点为终点作一向量, 这个向量即为所求的和. 负向量: 设a为一向量, 与a的模相同而方向相反的向量叫做a的负向量, 记为-a. 向量的减法: 我们规定两个向量b与a的差为 b-a=b+(-a). 即把向量-a加到向量b上, 便得b与a的差b-a. 特别地, 当b=a时, 有 a-a=a+(-a)=0. - - - 显然, 任给向量及点O, 有 , 因此, 若把向量a与b移到同一起点O, 则从a的终点A向b的终点B所引向量便是向量b与a的差b-a . 三角不等式: 由三角形两边之和大于第三边的原理, 有 |a+b|£|a|+|b|及|a-b|£|a|+|b|, 其中等号在b与a同向或反向时成立. 2.向量与数的乘法 向量与数的乘法的定义: 向量a与实数l的乘积记作la, 规定la是一个向量, 它的模|la|=|l||a|, 它的方向当l>0时与a相同, 当l<0时与a相反. 当l=0时, |la|=0, 即la为零向量, 这时它的方向可以是任意的. 特别地, 当l=±1时, 有 1a=a, (-1)a=-a. 运算规律: (1)结合律 l(ma)=m(la)=(lm)a; (2)分配律 (l+m)a=la+ma; l(a+b)=la+lb. 例1. 在平行四边形ABCD中, 设=a, =b. 试用a和b表示向量、、、, 其中M是平行四边形对角线的交点. 解 由于平行四边形的对角线互相平分, 所以 A B C D M a+b, 即 -(a+b), 于是 (a+b). 因为, 所以(a+b). 又因-a+b, 所以(b-a). 由于, 所以(a-b). 例1 在平行四边形ABCD中, 设, . 试用a和b表 示向量、、、, 其中M是平行四边形对角线的交点. A B C D M 解 由于平行四边形的对角线互相平分, 所以 , 于是; . 因为, 所以; 向量的单位化: 设a¹0, 则向量是与a同方向的单位向量, 记为ea. 于是a=|a|ea. 向量的单位化: 设a¹0, 则向量是与a同方向的单位向量, 记为ea. 于是a = | a | ea. 定理1 设向量a ¹ 0, 那么, 向量b平行于a的充分必要条件是: 存在唯一的实数l, 使 b = la. 证明: 条件的充分性是显然的, 下面证明条件的必要性. 设b // a. 取, 当b与a同向时l取正值, 当b与a反向时l取负值, 即b=la. 这是因为此时b与la同向, 且 |la|=|l||a|. 再证明数l的唯一性. 设b=la, 又设b=ma, 两式相减, 便得 (l-m)a=0, 即|l-m||a|=0. 因|a|¹0, 故|l-m|=0, 即l=m. 给定一个点及一个单位向量就确定了一条数轴. 设点O及单位向量i确定了数轴Ox, 对于轴上任一点P, 对应一个向量, 由//i, 根据定理1, 必有唯一的实数x, 使=xi(实数x叫做轴上有向线段的值), 并知与实数x一一对应. 于是 点P«向量= xi«实数x , 从而轴上的点P与实数x有一一对应的关系. 据此, 定义实数x为轴上点P的坐标. 由此可知, 轴上点P的坐标为x的充分必要条件是 = xi . 三、空间直角坐标系 在空间取定一点O和三个两两垂直的单位向量i、j、k, 就确定了三条都以O为原点的两两垂直的数轴, 依次记为x轴(横轴)、y轴(纵轴)、z轴(竖轴), 统称为坐标轴. 它们构成一个空间直角坐标系, 称为Oxyz坐标系. 注: (1)通常三个数轴应具有相同的长度单位; (2)通常把x 轴和y轴配置在水平面上, 而z轴则是铅垂线; (3)数轴的的正向通常符合右手规则. 坐标面: 在空间直角坐标系中, 任意两个坐标轴可以确定一个平面, 这种平面称为坐标面. x轴及y轴所确定的坐标面叫做xOy面, 另两个坐标面是yOz面和zOx面. 卦限: 三个坐标面把空间分成八个部分, 每一部分叫做卦限, 含有三个正半轴的卦限叫做第一卦限, 它位于xOy面的上方. 在xOy面的上方, 按逆时针方向排列着第二卦限、第三卦限和第四卦限. 在xOy面的下方, 与第一卦限对应的是第五卦限, 按逆时针方向还排列着第六卦限、第七卦限和第八卦限. 八个卦限分别用字母I、II、III、IV、V、VI、VII、VIII表示. 向量的坐标分解式: 任给向量r, 对应有点M, 使. 以OM为对角线、三条坐标轴为棱作长方体, 有 , 设 , , , 则 . 上式称为向量r的坐标分解式, xi、yj、zk称为向量r沿三个坐标轴方向的分向量. 显然, 给定向量r, 就确定了点M及, , 三个分向量, 进而确定了x、y、z三个有序数; 反之, 给定三个有序数x、y、z也就确定了向量r与点M. 于是点M、向量r与三个有序x、y、z之间有一一对应的关系 . 据此, 定义: 有序数x、y、z称为向量r(在坐标系Oxyz)中的坐标, 记作r=(x, y, z); 有序数x、y、z也称为点M(在坐标系Oxyz)的坐标, 记为M(x, y, z). 向量称为点M关于原点O的向径. 上述定义表明, 一个点与该点的向径有相同的坐标. 记号(x, y, z)既表示点M, 又表示向量. 坐标面上和坐标轴上的点, 其坐标各有一定的特征. 例如: 点M在yOz面上, 则x=0; 同相, 在zOx面上的点, y=0; 在xOy面上的点, z=0. 如果点M在x轴上, 则y=z=0; 同样在y轴上,有z=x=0; 在z轴上 的点, 有x=y=0. 如果点M为原点, 则x=y=z=0. 四、利用坐标作向量的线性运算 设a=(ax, ay, az), b=(bx, by, bz) 即 a=axi+ayj+azk, b=bxi+byj+bzk , 则 a+b=(axi+ayj+azk)+(bxi+byj+bzk) =(ax+bx)i+(ay+by)j+(az+bz)k =(ax+bx, ay+by, az+bz). a-b=(axi+ayj+azk)-(bxi+byj+bzk) =(ax-bx)i+(ay-by)j+(az-bz)k =(ax-bx, ay-by, az-bz). la=l(axi+ayj+azk) =(lax)i+(lay)j+(laz)k =(lax, lay, laz). 利用向量的坐标判断两个向量的平行: 设a=(ax, ay, az)¹0, b=(bx, by, bz), 向量b//aÛb=la , 即b//aÛ(bx, by, bz)=l(ax, ay, az), 于是. 例2 求解以向量为未知元的线性方程组, 其中a=(2, 1, 2), b=(-1, 1, -2). 解 如同解二元一次线性方程组, 可得 x=2a-3b, y=3a-5b . 以a、b的坐标表示式代入, 即得 x=2(2, 1, 2)-3(-1, 1, -2)=(7, -1, 10), y=3(2, 1, 2)-5(-1, 1, -2)=(11, -2, 16). 例3 已知两点A(x1, y1, z1)和B(x2, y2, z2)以及实数l¹-1, 在直线AB上求一点M, 使. 解 由于, , 因此 , 从而 . , 这就是点M的坐标. 另解 设所求点为M (x, y, z), 则, . 依题意有, 即 (x-x1, y-y1, z-z1)=l(x2-x, y2-y, z2-z) (x, y, z)-(x1, y1, z1)=l(x2, y2, z2)-l(x, y, z), , , , . 点M叫做有向线段的定比分点. 当l=1, 点M的有向线段的中点, 其坐标为 , , . 五、向量的模、方向角、投影 1.向量的模与两点间的距离公式 设向量r=(x, y, z), 作, 则 , 按勾股定理可得 , 设 , , , 有 |OP|=|x|, |OQ|=|y|, |OR|=|z|, 于是得向量模的坐标表示式 . 设有点A (x1, y1, z1)、B(x2, y2, z2), 则 =(x2, y2, z2)-(x1, y1, z1)=(x2-x1, y2-y1, z2-z1), 于是点A与点B间的距离为 . 例4 求证以M1(4, 3, 1)、M2 (7, 1, 2)、M3 (5, 2, 3)三点为顶点的三角形是一个等腰三角形. 解 因为 | M1M2|2 =(7-4)2+(1-3)2+(2-1)2 =14, | M2M3|2 =(5-7)2+(2-1)2+(3-2)2 =6, | M1M3|2 =(5-4)2+(2-3)2+(3-1)2 =6, 所以|M2 M3|=|M1M3|, 即D M1 M2 M3为等腰三角形. 例5 在z轴上求与两点A(-4, 1, 7)和B(3, 5, -2)等距离的点. 解 设所求的点为M(0, 0, z), 依题意有|MA|2=|MB|2, 即 (0+4)2+(0-1)2+(z-7)2=(3-0)2+(5-0)2+(-2-z)2. 解之得, 所以, 所求的点为. 例6 已知两点A(4, 0, 5)和B(7, 1, 3), 求与方向相同的单位向量e. 解 因为, , 所以 . 2.方向角与方向余弦 当把两个非零向量a与b的起点放到同一点时, 两个向量之间的不超过p的夹角称为向量a与b的夹角, 记作或. 如果向量a与b中有一个是零向量, 规定它们的夹角可以在0与p之间任意取值. 类似地, 可以规定向量与一轴的夹角或空间两轴的夹角. 非零向量r与三条坐标轴的夹角a、b、g称为向量r的方向角. 向量的方向余弦: 设r=(x, y, z), 则 x=|r|cosa, y=|r|cosb, z=|r|cosg . cosa、cosb、cosg 称为向量r的方向余弦. , , . 从而 . 上式表明, 以向量r的方向余弦为坐标的向量就是与r同方向的单位向量e r . 因此 cos2a+cos2b+cos2g=1. 例3 设已知两点)和B (1, 3, 0), 计算向量的模、方向余弦和方向角. 解 ; ; , , ; , , . 3.向量在轴上的投影 设点O及单位向量e确定u轴. 任给向量r, 作, 再过点M作与u轴垂直的平面交u轴于点M¢(点M¢叫作点M在u轴上的投影), 则向量称为向量r在u轴上的分向量. 设, 则数l称为向量r在u轴上的投影, 记作Prjur或(r)u . 按此定义, 向量a在直角坐标系Oxyz中的坐标ax, ay, az就是a在三条坐标轴上的投影, 即 ax=Prjxa, ay=Prjya, az=Prjza. 投影的性质: 性质1 (a)u=|a|cos j (即Prjua=|a|cos j), 其中j为向量与u轴的夹角; 性质2 (a+b)u=(a)u+(b)u (即Prju(a+b)= Prjua+Prjub); 性质3 (la)u=l(a)u (即Prju(la)=lPrjua); 9- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文