微积分基本定理二教学汇总省名师优质课赛课获奖课件市赛课一等奖课件.ppt
《微积分基本定理二教学汇总省名师优质课赛课获奖课件市赛课一等奖课件.ppt》由会员分享,可在线阅读,更多相关《微积分基本定理二教学汇总省名师优质课赛课获奖课件市赛课一等奖课件.ppt(20页珍藏版)》请在咨信网上搜索。
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,本资料仅供参考,不能作为科学依据。谢谢。本资料仅供参考,不能作为科学依据。谢谢,JXSDFZ,江西师大附中 曾敏,2.微积分基本定理(二),第1页,微积分基本定理:,设函数,f,(,x,)在区间,a,b,上连续,而且F(x)f(x),则,,这个结论叫,微积分基本定理,(,fundamental theorem of calculus),,又叫,牛顿莱布尼茨公式,(,Newton-Leibniz Formula).,第2页,说明:,牛顿莱布尼茨公式,提供了计算定积分简便基本方法,即求定积分值,,只要求出被积函数,f,(,x,)一个原函数,F,(,x,),,然后,计算原函数在区间,a,b,上增量,F,(,b,),F,(,a,)即可,.该公式把计算定积分归结为求原函数问题。,第3页,1、求出被积函数 f(x)一个原函数F(x),用,牛顿莱布尼茨公式,计算定积分主要思绪是什么?,2、计算原函数在区间,a,b,上增量F(b)F(a)即可.,第4页,第5页,定积分公式,第6页,例1计算以下定积分,解,(1),思索:,0,1,第7页,解,思索:,0,0,第8页,问题:,经过计算以下定积分,深入说明其定积分几何意义。,经过计算结果能发觉什么结论?试利用曲边梯形面积表示发觉结论,第9页,我们发觉:,()定积分值可取正值也可取负值,还能够是0;,(2)当曲边梯形位于x轴上方时,定积分值取正值;,(3)当曲边梯形位于x轴下方时,定积分值取负值;,(4)当曲边梯形位于x轴上方面积等于位于x轴下方,面积时,定积分值为0,得到定积分几何意义:,曲边梯形面积,代数和,。,第10页,生活中微积分,(,不妨试试,),假设一物体从飞机上扔下,t秒物体下落速度近似为:,(,),请写出t秒后物体下落距离表示式;,第11页,例2:计算,其中,解,1,2,F(x)=2x,Y=5,第12页,第13页,微积分与其它函数知识综合举例:,第14页,第15页,练一练:,已知f(x)=ax,+bx+c,且f(-1)=2,f(0)=0,第16页,练一练:,.计算以下定积分,(1),(2),(3),解,(1),第17页,(3),(2),(3),第18页,微积分基本定理,牛顿莱布尼茨公式沟通了导数与定积分之间关系,小结,求定积分方法,(1)利用定义求定积分(定义法),可操作性不强.,(2)利用微积分基本定理求定积分步骤以下:,求被积函数,f,(,x,)一个原函数,F,(,x,);,计算,F,(,b,)-,F,(,a,).,(3)利用定积分几何意义求定积分,当曲边梯形面积易求时,可经过求曲边梯形面积求定积分.,第19页,书本P,85,习题4-2 4,6;,作业,第20页,- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分 基本 定理 教学 汇总 名师 优质课 获奖 课件 市赛课 一等奖
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文