八年级数学上册 矩形、正方形(第二课时)教案北师大版.doc
《八年级数学上册 矩形、正方形(第二课时)教案北师大版.doc》由会员分享,可在线阅读,更多相关《八年级数学上册 矩形、正方形(第二课时)教案北师大版.doc(10页珍藏版)》请在咨信网上搜索。
矩形、正方形 教学设计第(二)课时 教学设计思想 本节内容需两课时讲授;第一课时主要学习矩形的定义及性质、判别,第二课时学习正方形的定义及性质;第一课时首先通过一些生活中的矩形实例直接引入矩形的定义,矩形的性质由实验操作活动探索得出,例1的设置不仅在于熟悉和应用矩形的有关性质,而且在于为“议一议”中的(2)“直角三角形斜边上的中线等于斜边长的一半”提供推理的前提和依据.第二课时首先通过图形的变化引出正方形的定义,然后师生共同探讨正方形、菱形、矩形、平行四边形的关系来得出正方形的性质,最后让学生课上练习对知识加以巩固. 一、教学目标 (一)知识与技能 1.熟记正方形的概念及正方形的性质. 2.明确特殊平行四边形之间的关系. 3.知道正方形的判别条件. (二)过程与方法 1.经历探索正方形有关性质和判别条件的过程.在简单的操作活动和说理过程中,发展学生初步的合情推理能力,主动探究习惯,逐步掌握说理的基本方法. 2.探索并掌握正方形的有关性质,正方形的判别条件. (三)情感、态度与价值观 1.通过正方形有关知识的学习,感受正方形的图形美和语言美. 2.理解特殊的平行四边形之间的内在联系,培养学生辩证观点. 二、教学重点 正方形的定义. 三、教学难点 正方形的性质的应用. 四、教学方法 探索、归纳法. 五、教具准备 一个活动的平行四边形木框、白纸、剪刀、投影片、剪刀. 六、教学过程 Ⅰ.巧设情景问题,引入课题 [师]在小学学过的平行四边形、矩形、菱形、正方形这些特殊的四边形中,我们已经研究了平行四边形、菱形、矩形的定义、性质和判别条件,而正方形还没有研究过,根据小学学过的正方形的知识,你能说出它有哪些性质吗? [生]正方形的四条边相等,四个角都是直角,正方形的面积等于边长的平方. [师]很好,这节课我们就来进一步研究正方形(square) Ⅱ.讲授新课 [师]下面我们来看一个平行四边形变成正方形的全过程.(演示) 由于平行四边形具有不稳定性,所以先把平行四边形木框的一个角变为直角,再移动一条短边,截成有一组邻边相等,此时平行四边形变成了一个正方形. 这个变化过程,可用如下图表示 由此可知:正方形是一组邻边相等的矩形.即:一组邻边相等的矩形叫做正方形. 这个平行四边形木框还可以这样变化:先移动一条短边,截成有一组邻边相等的平行四边形,再把一个角变成直角,此时的平行四边形也变成了正方形. 这个变化过程,也可用图表示 你能从这个变化过程中给正方形下定义吗? [生]一组邻边相等的平行四边形是菱形.正方形是一个角为直角的菱形,所以可以说:有一个角是直角的菱形叫做正方形. [师]很好,由此可知:正方形是特殊的矩形,即是邻边相等的矩形,也是特殊的菱形,即是有一个角是直角的菱形. 接下来我们讨论正方形的性质,它有哪些性质呢?同学们讨论、总结. [生甲]因为正方形是平行四边形、菱形、矩形,所以它的性质是它们的综合,不仅有平行四边形的所有性质,也有矩形和菱形的特殊性质,即: 正方形具有平行四边形、菱形、矩形的一切性质. [生乙]正方形的性质: 边:对边平行、四边相等 角:四个角都是直角 对角线:对角线相等,互相垂直平分,每条对角线平分一组对角. [师]同学们总结得全面、准确、正方形的性质同样可以边、角、对角线这三个方面来总结 (乙同学总结的性质) 大家想一想:正方形是轴对称图形吗?如是,它有几条对称轴? [生]正方形是轴对称图形,它有四条对称轴,即:两条对角线,两组对边的中垂线. [师]好,下面我们来看一例题,以熟悉理解正方形的性质 [例1]如图,四边形ABCD是正方形,两条对角线相交于点O,求∠AOB、∠OAB的度数. 分析:本题是正方形的性质的直接应用.正方形的性质很多,要恰当运用,本题主要用到正方形的对角线的性质,即正方形的轴对称性. 解:正方形ABCD是菱形,对角线AC、BD一定互相垂直,所以∠AOB=90°. 正方形ABCD是矩形,又是菱形,所以: ∠BAD=90°且对角线AC平分∠BAD,因此:∠OAB=45°. [师]本题还有其他解法吗? [生甲]因为四边形ABCD是正方形,所以∠BAD=90°,AB=AD,OB=OD,所以△ABD是等腰直角三角形.又因为OB=OD,等腰三角形底边上的中线与底边上的高,顶角的角平分线重合,所以∠AOB=90°,∠OAB=45°. [生乙]因为正方形是轴对称图形,它的对角线是它的对称轴,所以把正方形ABCD沿对角线AC对折,则△ABC与△ADC重合.∠BAC与∠DAC重合,因为∠BAD是直角,所以∠OAB=45°,把正方形ABCD沿对角线AC对折后,再沿对角线BD对折,则这时∠AOB、∠BOC、∠DOC、∠AOD重合,而这四个角的和为360°,所以这四个角都等于90°,即∠AOB=90°. [师生共析]由上述可知:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形. [师]下面我们拿出准备好的剪刀、白纸来做一做 将一张长方形纸对折两次(可演示),然后剪下一个角,打开,怎样剪才能剪出一个正方形?(剪刀线与折痕成多少度的角?) (学生动手折叠,想,剪切) [生]只要保证剪口线与折痕成45°角即可.因为正方形的两条对角线把它分成四个全等的等腰直角三角形,把折痕当作对角线,这时只需剪一个等腰直角三角形,打开即是正方形. [师]很好,同学们应用折叠、剪切,得到一个正方形,说明大家基本掌握了正方形的性质. 正方形是平行四边形、矩形、又是菱形,那么它们四者之间有何关系呢?大家来议一议 正方形、矩形、菱形及平行四边形四者之间有什么关系呢? [生甲]正方形、矩形、菱形都是平行四边形,正方形既是矩形,又是菱形. [生乙]平行四边形有一个内角为直角时,这时的平行四边形是矩形,当平行四边形的相邻的边相等时,这时的平行四边形是菱形,矩形的一组邻边相等时,此时的矩形是正方形,菱形的一个内角为直角时,此时的菱形是正方形. [生丙]矩形的对角线互相垂直时,此时的矩形是正方形,菱形的两条对角线相等时,此时的菱形是正方形. [师]同学们总结得很好,正方形、矩形、菱形都是平行四边形,但它们都是有特殊性质的平行四边形,正方形不仅是特殊的平行四边形,而且是邻边相等的特殊矩形,也是有一个角为直角的特殊菱形.它们的包含关系如图: 乙同学,丙同学总结的这四者之间的关系可用下图表示 由这个图你能知道什么? [生]由这个图可以知道:什么样的平行四边形是正方形. [师]很好,此图给出了正方形的判别条件,即怎样判定一个平行四边形是正方形? [师生共析]先判定一个四边形是平行四边形,再判定这个平行四边形是矩形,然后再判定这个矩形是菱形;或者先判定一个四边形是菱形,再判定这个菱形是矩形. 由于判定平行四边形、矩形、菱形的方法各异,所给出的条件不一样,所以判定一个四边形是不是正方形的具体条件也相应可作变化,在应用时要仔细辨别后才可以作出判断. [师]下面大家来做练习以巩固本节所学内容. Ⅲ.课堂练习 课本P115随堂练习 边长为2cm的正方形,对角线的长是多少? 解:如图,正方形ABCD的边长为2 cm,对角线AC把它分成两个全等的等腰直角三角形,所以,在Rt△ABC中,AB2+BC2=AC2 AC= 因此:边长为2 cm的正方形的对角线的长是2 cm. 2.如图中,有多少个等腰直角三角形? 答:以正方形的四个顶点为直角顶点,共有四个等腰直角三角形,以正方形两条对角线的交点为顶点的等腰直角三角形也有四个,因而共有八个等腰直角三角形. Ⅳ.课时小结 本节课我们探讨了正方形的定义、性质和判别条件.现在来总结一下: 正方形的定义:一组邻边相等的矩形. 正方形的性质与平行四边形、矩形、菱形的性质可比较如下:(出示小黑板) (小结性质时,师生共同完成,凡是图形所具有的性质,在表中相应的空格中填上“√”, 没有的性质不要填写) 由表中可知:矩形、菱形具有平行四边形的一切性质,又具有各自的特殊性质,正方形具有平行四边形、矩形、菱形的一切性质,又具有自身的特殊性质,因此矩形和菱形都是特殊的平行四边形.正方形也是特殊的平行四边形,又是特殊的矩形,特殊的菱形. 正方形的判别条件: Ⅴ.课后作业 (一)课本P117习题4.7 1、2、3. (二)课本P116“读一读”. (三)1.预习内容:梯形 2.预习提纲: (1)中心对称图形的定义. (2)中心对称图形的性质. Ⅵ.活动与探究 如图,正方形ABCD被两条与边平行的线段EF、GH分割成四个矩形,P是EF与GH的交点,若矩形PFCH的面积恰是矩形AGPE的面积的2倍,试确定∠HAF的大小并证明你的结论. 过程:让学生探讨、归纳,使其懂得:对于正方形问题,常将某个三角形绕正方形的顶点旋转90°,将分散的条件集中,使问题朝着有利问题解决的方向转化. 因为与正方形有关的角有45°、90°,所以本题可猜想∠HAF=45°,要证这一结论,可将△ADH旋转到△ABM的位置,使∠HAM=90°,若证∠HAF=∠FAM,则结论成立. 结果:证明:连接FH,延长CB到M,使BM=DH,连接AM. 则△ADH≌△ABM,∴AM=AH 设AG=a,BG=b,AE=x,ED=y 由①得:a-x=y-b 两边平方,得:a2-2ax+x2=y2-2by+b2 把②代入,得:a2-2ax+x2=y2-4ax+b2 则(a+x)2=b2+y2 a+x==FH ∴FM=FH 又∵AF=AF,∴MAF≌△HAF ∴∠HAF=∠MAF 又∵∠HAF+∠MAF=∠HAF+∠BAF+∠DAH=90° ∴∠HAF=45° 七、板书设计 §4.4.2 矩形、正方形(二) 一、正方形的定义 四、课堂练习 二、正方形的性质 例1(性质的应用) 五、课时小结 三、正方形的判别条件 六、课后作业- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年级数学上册 矩形、正方形第二课时教案 北师大版 八年 级数 上册 矩形 正方形 第二 课时 教案 北师大
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文