春八年级数学下册 第5章 分式与分式方程 1 认识分式教案 (新版)北师大版-(新版)北师大版初中八年级下册数学教案.doc
《春八年级数学下册 第5章 分式与分式方程 1 认识分式教案 (新版)北师大版-(新版)北师大版初中八年级下册数学教案.doc》由会员分享,可在线阅读,更多相关《春八年级数学下册 第5章 分式与分式方程 1 认识分式教案 (新版)北师大版-(新版)北师大版初中八年级下册数学教案.doc(7页珍藏版)》请在咨信网上搜索。
1 认识分式 第1课时 分式的有关概念 教学目标 一、基本目标 1.了解分式的概念,明确分式与整式的区别. 2.经历用字母表示现实情境中数量关系的过程,体会分式的模型思想,进一步发展符号感. 3.通过教材土地沙化问题的情境,体会保护人类生存环境的重要性. 二、重难点目标 【教学重点】 分式的概念. 【教学难点】 分式有(无)意义的条件,分式值为0的条件. 教学过程 环节1 自学提纲,生成问题 【5 min阅读】 阅读教材P108~P109的内容,完成下面练习. 【3 min反馈】 1.一般地,用A、B表示两个整式,A÷B可以表示成的形式.如果B中含有字母,那么称为分式,其中A称为分式的分子,B称为分式的分母.对于任意一个分式,分母都不能为零. 2.分式有意义的条件是分母不为0.分式的值为0的条件是分子等于0,且分母不等于0. 3.下列各式中,哪些是分式? ①;②;③;④;⑤;⑥2x2+;⑦;⑧-5;⑨3x2-1;⑩;⑪5x-7. 解:分式有①②④⑦⑩. 4.当x取何值时,下列分式无意义?当x取何值时,下列分式的值等于0? (1);(2). 解:(1)当x+2=0时,即x=-2时,分式无意义.当x=3时,分式的值等于0. (2)当3-2x=0时,即x=时,分式无意义.当x=-5时,分式的值等于0. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】当x取何值时,下列分式有意义?当x取何值时,下列分式无意义?当x取何值时,下列分式值为零? (1) ; (2); (3). 【互动探索】(引发学生思考)根据分式有、无意义所满足的条件进行判断.分式的值为0,则分母不为0,且分子等于0. 【解答】(1)有意义:x-1≠0,即x≠1. 无意义:x-1=0,即x=1. 值为0:x+1=0且x-1≠0,∴x=-1. (2)有意义:x2-1≠0,即x≠±1. 无意义:x2-1=0,即x=±1. 值为0:x-2=0且x2-1≠0,∴x=2. (3)有意义:x2-x≠0,即x≠0且x≠1. 无意义:x2-x=0,即x=0或x=1. 值为0:x2-1=0且x2-x≠0,即x=-1. 【互动总结】(学生总结,老师点评)分式有意义的条件:分式的分母不能为0.分式无意义的条件:分式的分母等于0.分式值为0的条件:分式的分子等于0,但分母不能等于0.分式的值为0一定是在有意义的条件下成立的. 活动2 巩固练习(学生独学) 1.若代数式+有意义,则实数x的取值范围是( D ) A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠1 2.若分式有意义,则x的取值范围是x≠-. 3.若分式的值为0,则x的值是1. 4.对于分式,已知当x=-3时,分式的值为0;当x=2时,分式无意义.试求m、n的值. 解:∵当x=-3时,分式的值为0, ∴即 又∵当x=2时,分式无意义, ∴m-2n+3×2=0,即m-2n=-6. 解方程组得 活动3 拓展延伸(学生对学) 【例2】观察下面一列分式:,-,,-,….(其中x≠0) (1)根据上述分式的规律写出第6个分式; (2)根据你发现的规律,试写出第n(n为正整数)个分式,并简单说明理由. 【互动探索】(1)根据已知分式的分子与分母的次数与系数关系得出答案;(2)利用(1)中数据的变化规律得出答案. 【解答】(1)观察各分式的规律可得,第6个分式为-. (2)由已知可得:第n(n为正整数)个分式为(-1)n+1×.理由:∵分母的底数为y,次数是连续的正整数,分子底数是x,次数是连续的奇数,且第偶数个分式为负,∴第n(n为正整数)个分式为(-1)n+1×. 【互动总结】(学生总结,老师点评)此题主要考查了分式的定义以及数字变化规律,得出分子与分母的变化规律是解题关键. 环节3 课堂小结,当堂达标 (学生总结,老师点评) 1.分式的概念:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式. 2.分式有无意义的条件:当B≠0时,分式有意义;当B=0时,分式无意义. 3.分式值为0的条件:当A=0,B≠0时,分式的值为0. 练习设计 请完成本课时对应练习! 第2课时 分式的基本性质 教学目标 一、基本目标 1.能正确理解和运用分式的基本性质. 2.通过与分数的基本性质相比较,归纳得出分式的基本性质,体验类比的思想方法. 二、重难点目标 【教学重点】 理解分式的基本性质,会进行分式的化简. 【教学难点】 灵活应用分式的基本性质将分式变形. 教学过程 环节1 自学提纲,生成问题 【5 min阅读】 阅读教材P110~P112的内容,完成下面练习. 【3 min反馈】 1.分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.这一性质可以用式子表示为:=,=(m≠0). 2.把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.分子和分母已没有公因式,这样的分式称为最简分式.化简分式时,通常要使结果成为最简分式或整式. 3.分式的分子、分母及分式本身的三个符号中,任意改变其中两个的符号,分式的值不变;若只改变其中一个或三个全变号,则分式的值变成原分式值的相反数. 4.下列等式的右边是怎样从左边得到的? (1)=(c≠0); (2)=. 解:(1)由c≠0,知==. (2)由x≠0,知==. 5.约分: (1); (2). 解:(1)公因式为ab,所以=ac. (2)公因式为8a2b2,所以-=-. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】不改变分式的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( ) A.. B.. C. D. 【互动探索】(引发学生思考)利用分式的基本性质,把的分子、分母都乘10,得. 【答案】C 【互动总结】(学生总结,老师点评)观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的基本性质让分子和分母同乘某一个数即可. 【例2】约分:(1); (2). 【互动探索】(引发学生思考)要约分需要先找分子、分母的公因式,如何确定公因式呢? 【解答】(1)==-. (2)==. 【互动总结】(学生总结,老师点评)约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式. 活动2 巩固练习(学生独学) 1.把分式中的x和y都扩大为原来的5倍,那么分式的值( B ) A.扩大为原来的5倍 B.不变 C.缩小为原来的 D.扩大为原来的倍 2.将分式的分子与分母中各项系数化为整数,结果是. 3.约分: (1); (2). 解:(1). (2)-. 4.先约分,再求值: (1),其中m=1,n=2; (2),其中x=2,y=4. 解:(1)===1. (2)====-. 活动3 拓展延伸(学生对学) 【例3】若==≠0,求的值. 【互动探索】因为条件是以比相等的形式出现,所以考虑设比值为k,把待求式转化为关于k的式子求值. 【解答】设===k(k≠0),x=2k,y=3k,z=4k,∴===-. 【互动总结】(学生总结,老师点评)当数学问题中出现或隐含比值相等的条件时,设比值为一个新字母,把问题转化为新字母的问题求解. 环节3 课堂小结,当堂达标 (学生总结,老师点评) 1.分式的基本性质:分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变. 2.符号法则:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;若只改变其中一个符号或三个全变号,则分式的值变成原分式值的相反数. 练习设计 请完成本课时对应练习!- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 春八年级数学下册 第5章 分式与分式方程 认识分式教案 新版北师大版-新版北师大版初中八年级下册数学教案 八年 级数 下册 分式 方程 认识 教案 新版 北师大 初中 年级 数学教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:春八年级数学下册 第5章 分式与分式方程 1 认识分式教案 (新版)北师大版-(新版)北师大版初中八年级下册数学教案.doc
链接地址:https://www.zixin.com.cn/doc/7638226.html
链接地址:https://www.zixin.com.cn/doc/7638226.html