新疆塔城第三中学九年级数学 第28章《锐角三角函数》教案.doc
《新疆塔城第三中学九年级数学 第28章《锐角三角函数》教案.doc》由会员分享,可在线阅读,更多相关《新疆塔城第三中学九年级数学 第28章《锐角三角函数》教案.doc(78页珍藏版)》请在咨信网上搜索。
第二十八章 锐角三角函数 教案 单元要点分析 内容简介 本章内容分为两节,第一节主要学习正弦、余弦和正切等锐角三角函数的概念,第二节主要研究直角三角形中的边角关系和解直角三角形的内容.第一节内容是第二节的基础,第二节是第一节的应用,并对第一节的学习有巩固和提高的作用. 相似三角形和勾股定理等是学习本章的直接基础. 本章属于三角学中的最基础的部分内容,而高中阶段的三角内容是三角学的主体部分,无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础. 教学目标 1.知识与技能 (1)通过实例认识直角三角形的边角关系,即锐角三角函数(sinA,cosA,tanA),知道30°,45°,60°角的三角函数值. (2)会使用计算器由已知锐角求它的三角函数值,由已知三角函数值会求它的对应的锐角. (3)运用三角函数解决与直角三角形有关的简单的实际问题. (4)能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题. 2.过程与方法 贯彻在实践活动中发现问题,提出问题,在探究问题的过程中找出规律,再运用这些规律于实际生活中. 3.情感、态度与价值观 通过解直角三角形培养学生数形结合的思想. 重点与难点 1.重点 (1)锐角三角函数的概念和直角三角形的解法,特殊角的三角函数值也很重要,应该牢牢记住. (2)能够运用三角函数解直角三角形,并解决与直角三角形有关的实际问题. 2.难点 (1)锐角三角函数的概念. (2)经历探索30°,45°,60°角的三角函数值的过程,发展学生观察、分析,解决问题的能力. 教学方法 在本章,学生首次接触到以角度为自变量的三角函数,初学者不易理解.讲课时应注意,只有让学生正确理解锐角三角函数的概念,才能掌握直角三角形边与角之间的关系,才能运用这些关系解直角三角形.故教学中应注意以下几点: 1.突出学数学、用数学的意识与过程.三角函数的应用尽量和实际问题联系起来,减少单纯解直角三角形的问题. 2.在呈现方式上,突出实践性与研究性,三角函数的意义要通过问题经出,再加以探索认识. 3.对实际问题,注意联系生活实际. 4.适度增加训练学生逻辑思维的习题,减少机械操作性习题,增加探索性问题的比重. 课时安排 本章共分9课时. 28.1 锐角三角函数 4课时 28.2 解直角三角形 4课时 小结 1课时 28.1 锐角三角函数 内容简介 本节先研究正弦函数,在此基础上给出余弦函数和正切函数的概念.通过两个特殊的直角三角形,让学生感受到不管直角三角形大小,只要角度不变,那么它们所对的边与斜边的比分别都是常数,这为引出正弦函数的概念作好铺垫.这样引出正弦函数的概念,能够使学生充分感受到函数的思想,由于教科书比较详细地讨论了正弦函数的概念,因此对余弦函数和正切函数概念的讨论采用了直接给出的方式,具体的讨论由学生类比着正弦函数自己完成.教科书将求特殊角的三角函数值和已知特殊角的三角函数值求角这两个相反方向的问题安排在一起,目的是体现锐角三角函数中角与函数值之间的对应关系.本节最后介绍了如何使用计算器求非特殊角的三角函数值以及如何根据三角函数值求对应的角等内容.由于不同的计算器操作步骤有所不同,教科书只就常见的情况进行介绍. 教学目标 1.知识与技能 (1)了解锐角三角函数的概念,能够正确应用sinA、cosA、tanA表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值说出这个角; (2)能够正确地使用计算器,由已知锐角求出它的三角函数值,由已知三角函数值求出相应的锐角. 2.过程与方法 通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力. 3.情感、态度与价值观 引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯. 重点与难点 1.重点:正弦、余弦;正切三个三角函数概念及其应用. 2.难点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.用含有几个字母的符号组sinA、cosA表示正弦、余弦;正弦、余弦概念. 教学方法 学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,教学中应十分重视.同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,在教学中应作为难点处理. 第1课时 正弦函数 复习引入 教师讲解:杂志上有过这样的一篇报道:始建于1350年的意大利比萨斜塔落成时就已经倾斜.1972年比萨发生地震,这座高54.5m的斜塔大幅度摇摆22分之分,仍巍然屹立.可是,塔顶中心点偏离垂直中心线的距离已由落成时的2.1m增加至5.2m,而且还以每年倾斜1cm的速度继续增加,随时都有倒塌的危险.为此,意大利当局从1990年起对斜塔进行维修纠偏,2001年竣工,使顶中心点偏离垂直中心线的距离比纠偏前减少了43.8cm. 根据上面的这段报道中,“塔顶中心点偏离垂直中心线的距离已由落成时的2.1m增加至5.2m,”这句话你是怎样理解的,它能用来描述比萨斜塔的倾斜程度吗? 这个问题涉及到锐角三角函数的知识.学过本章之后,你就可以轻松地解答这个问题了! 探究新知 (1)问题的引入 教师讲解:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管? 教师提出问题:怎样将上述实际问题用数学语言表达,要求学生写在纸上,互相讨论,看谁写得最合理,然后由教师总结. 教师总结:这个问题可以归纳为,在Rt△ABC中,∠C=90°,∠A=30°,BC=35m,求AB(课本图28.1-1). 根据“在直角三角形中,30°角所对的边等于斜边的一半”,即 = 可得AB=2BC=70m,也就是说,需要准备70m长的水管. 教师更换问题的条件后提出新问题:在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的水管?要求学生在解决新问题时寻找解决这两个问题的共同点. 教师引导学生得出这样的结论:在上面求AB(所需水管的长度)的过程中,虽然问题条件改变了,但我们所用的定理是一样的:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于.也是说,只要山坡的坡度是30°这个条件不变,那么斜边与对边的比值不变. 教师提出第2个问题:既然直角三角形中,30°角的斜边与对边的比值不变,那么其他角度的对边与斜边的比值是否也不会变呢?我们再换一个解试一试.如课本图28.1-2,在Rt△ABC中,∠C=90°,∠A=45°,∠A对边与斜边的比值是一个定值吗?如果是,是多少? 教师要求学生自己计算,得出结论,然后再由教师总结:在Rt△ABC中,∠C=90°由于∠A=45°,所以Rt△ABC是等腰直角三角形,由勾股定理得AB2=AC2+BC2=2BC2,AB=BC. 因此 =, 即在直角三角形中,当一个锐角等于45°时,不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于. 教师再将问题提升到更高一个层次:从上面这两个问题的结论中可知,在一个Rt△ABC中,∠C=90°,当∠A=30°时,∠A的对边与斜边的比都等于,是一个固定值;当∠A=45°时,∠A的对边与斜边的比都等于,也是一个固定值.这就引发我们产生这样一个疑问:当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值? 教师直接告诉学生,这个问题的回答是肯定的,并边板书,边与学生共同探究证明方法.这为问题可以转化为以下数学语言: 任意画Rt△ABC和Rt△A′B′C′(课本图28.1-3),使得∠C=∠C′=90°,∠A=∠A′=a,那么有什么关系. 在课本图28.1-3中,由于∠C=∠C′=90°,∠A=∠A′=a,所以Rt△ABC∽Rt△A′B′C′,,即. 这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都是一个固定值. (二)正弦函数概念的提出 教师讲解:在日常生活中和数学活动中上面所得出的结论是非常有用的.为了引用这个结论时叙述方便,数学家作出了如下规定: 如课本图28.1-4,在Rt△BC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA= =. 在课本图28.1-4中,∠A的对边记作a,∠B的对边记作b,∠C的对边记作c. 例如,当∠A=30°时,我们有sinA=sin30°=; 当∠A=45°时,我们有sinA=sin45°=. (三)正弦函数的简单应用 教师讲解课本第79页例题1. 例1 如课本图28.1-5,在Rt△ABC中,∠C=90°,求sinA和sinB的值. 教师对题目进行分析:求sinA就是要确定∠A的对边与斜边的比;求sinB就是要确定∠B的对边与斜边的比.我们已经知道了∠A对边的值,所以解题时应先求斜边的高. 解:如课本图28.5-1(1),在Rt△ABC中, AB==5. 因此 sinA==,sinB==. 如课本图28.5-1(2),在Rt△ABC中, sinA==,AC==12. 因此,sinB==. 随堂练习 做课本第79页练习. 课时总结 在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都是一个固定值. 在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA, 教后反思 ______________________________________ _____________________________________________________________________ 第1课时作业设计 课本练习 双基与中考 1.如图1,已知点P的坐标是(a,b),则sinα等于( ) A. B. C. (1) (2) (3) 2.(2005,南京)如图2,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是( ) A. B. C. D. 3.在Rt△ABC中,∠C=90°,sinA=,则sinB等于( ) A. B. C. D. 4.(2004.辽宁大连)在Rt△ABC中,∠C=90°,a=1,c=4,则sinA的值是( ). A. 5.如图3,在Rt△ABC中,∠C=90°,AB=10,sinB=,BC的长是( ). A.2 28.1.2 余弦、正切函数(第2课时) 复习引入 教师提问:我们是怎样定义直角三角形中一个锐角的正弦的?为什么可以这样定义它. 学生回答后教师提出新问题:在上道,如课本图28.1-6所示,在Rt△ABC中,∠C=90°,当锐角A确定时,∠A的对边与斜边的比就随之确定了.现在我们要问:其他边之间的比是否也确定了呢?为什么? 探究新知 (一)余弦、正切概念的引入 教师引导学生论,其证明方法与上一节课证明对边比斜边为定值的方法相同,都是通过两个三角形相似来证明. 学生证明过后教师进行总结:类似于正弦的情况,在课本图28.1-6中,当锐角A的大小确定时,∠A的斜边与邻边的比、∠A的对边与邻边的比也分别是确定的.我们把∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA==; 把∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA==. 教师讲解并板书:锐角A的正弦、做∠A的锐角三角函数. 对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是A的函数.同样地,cosA,tanA也是A的函数. (二)余弦正切概念的应用 教2题意:如课本图28.1-7,在Rt△ABC中,∠C=90°,BC=6,sinA=,求cosA、tanB的值. 教师对解题方法进行分角三角形中一条边的值,要求余弦,正切值,就要求斜边与另一个直角边的值.我们可以通过已知角的正弦值与对边值及勾股定理来求. 教师分析完后要求学生自己解题.学生解后教师总结并板书. 解:sinA=, ∴AB==6×=10, 又∵AC==8, ∴cosA==,tanB==. 随堂练习 学生做课本第81页练习1、2、3题. 课时总结 在直角三角形中,当锐角A的大小确定时,∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,把∠A的对边与斜边的比叫做∠A的正切,记作tanA. 教后反思 ____________________________________________________________________ __________________________________________________________________________ 第2课时作业设计 课本练习 双基与中考 一、选择题. 1.已知sina+cosa=m,sina·cosa=n,则m,n的关系是( ). A.m=n B.m=2n+1 C.m2=2n+1 D.m2=1-2n 2.在直角三角形ABC中,∠A为锐角,且cosA=,那么( ). A.0°<∠A≤30° B.30°≤∠A≤45° C.45°<∠A≤60° D.60°<∠A<90° 3.如图1,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阴影部分)的面积为( ). A. C.sina D.1 (1) (2) (3) (4) 4.如图2,在四边形ABCD中,∠BAD=∠BDC=90°,且AD=3,sin∠ABD=,sin∠DBC=,则AB,BC,CD长分别为( ). A.4,12,13 B.4,13,12 C.5,12,13 D.5,13,12 5.如果a是锐角,且cosa=,那么sin(90°-a)的值等于( ). A. 6.如图3,菱形ABCD中,对角线AC=6,BD=8,∠ABD=a,则下列结论正确的是( ). A.sina= B.cosa= C.tana= D.tana= 7.如图4,为测一河两岸相对两电线杆A、B间的距离,在距A点17米的C处(AC⊥AB)测得∠ACB=50°,则A、B间的距离应为( ). A.17sin50°米 B.17cos50°米 C.17tan50°米 D.17cot50°米 8.在△ABC中,∠C=90°,且AC>BC,CD⊥AB于D,DE⊥AC于E,EF⊥AB于F,若CD=4,AB=10,则EF:AF等于( ). A. B. C. 二、填空题 9.直角三角形的斜边和一条直角边的比为25:24,则其中最小角的正切值是________. 10.在Rt△ABC中,∠C=90°,a+b=4,且S△ABC=2,则c=_______. 11.已知直角三角形中较长的直角边长为30,这边所对角的余弦值为,则此三角形的周长为______,面积为_______. 12.已知sinα·cosα=,0°<α<45°,则sinα-cosα=_______. 三、解答题 13.已知等腰三角形的一条腰长为20cm,底边长为30cm,求底角的正切值. 14.已知sinα,cosα是方程4x2-2(1+)x+=0的两根,求sin2α+cos2α的值. 第2课时作业设计(答案) 一、1.C 2.D 3.A 4.B 5.B 6.D 7.C 8.A 二、9. 10.2 11.80,240 12.- 三、13.如图,设△ABC为等腰三角形,AB=AC=20,BC=30,过A作AD⊥BC于D, 则D为BC中点. ∴BD=15,在Rt△ABD中,AD==5. ∴tanB=. 14.∵sinα+cosα=(1+),cosα·sinα=, ∴sin2α+cos2α=(sinα+cosα)2-2sinα·cosα =[(1+)] 2- =1. 28.1.3 特殊角的三角函数值 (第3课时) 复习引入 教师提问:一个直角三角形中,一个锐角正弦、余弦、正切值是怎么定义的? 在学生回答了这个问题后,教师再复述一遍,提出新问题:两块三角尺中有几个不同的锐角?是多少度?分别求出这几个锐角的正弦值、余弦值和正切值. 提醒学生:求时可以设每个三角尺较短的边长为1,利用勾股定理和三角函数的定义可以求出这些三角函数值. 探究新知 (一)特殊值的三角函数 学生在求完这些角的正弦值、余弦值和正切值后教师加以总结. 30°、45°、60°的正弦值、余弦值和正切值如下表: 30° 45° 60° sinα cosα tanα 1 教师讲解上表中数学变化的规律:对于正弦值,分母都是2,分子按角度增加分别为,与.对于余弦值,分母都是2,分子按角度增加分别为,与.对于正切,60度的正切值为,当角度递减时,分别将上一个正切值除以,即是下一个角的正切值. 要求学生记住上述特殊角的三角函数值. 教师强调:(sin60°)2用sin260°表示,即为(sin60°)·(sin60°). (二)特殊角三角函数的应用 1.师生共同完成课本第82页例3:求下列各式的值. (1)cos260°+sin260°. (2)-tan45°. 教师以提问方式一步一步解上面两题.学生回答,教师板书. 解:(1)cos260°+sin260°=()2+()2=1 (2)-tan45°=÷-1=0 2.师生共同完成课本第82页例4:教师解答题意: (1)如课本图28.1-9(1),在Rt△ABC中,∠C=90,AB=,BC=,求∠A的度数. (2)如课本图28.1-9(2),已知圆锥的高AO等于圆锥的底面半径OB的倍,求a. 教师分析解题方法:要求一个直角三角形中一个锐角的度数,可以先求它的某一个三角函数的值,如果这个值是一个特殊解,那么我们就可以求出这个角的度数. 解:(1)在课本图28.1-9(1)中, ∵sinA==, ∴∠A=45°. (2)在课本图28.1-9(2)中, ∵tana==, ∴a=60°. 教师提醒学生:当A、B为锐角时,若A≠B,则 sinA≠sinB,cosA≠cosB,tanA≠tanB. 随堂练习 学生做课本第83页练习第1、2题. 课时总结 学生要牢记下表: 30° 45° 60° sinα cosα tanα 1 对于sina与tana,角度越大函数值也越大;对于cosa,角度越大函数值越小. 教后反思 _____________________________________________________________________ ________________________________________________________________________ 第3课时作业设计 课本练习 做课本第85页习题28.1复习巩固第3题. 双基与中考 (本练习除了作为本课时的课外作业之外,余下的部分作为下一课时(习题课)学生的课堂作业.学生可以自己根据具体情况划分课内、课外作业的份量). 一、选择题. 1.已知:Rt△ABC中,∠C=90°,cosA=,AB=15,则AC的长是( ). A.3 B.6 C.9 D.12 2.下列各式中不正确的是( ). A.sin260°+cos260°=1 B.sin30°+cos30°=1 C.sin35°=cos55° D.tan45°>sin45° 3.计算2sin30°-2cos60°+tan45°的结果是( ). A.2 B. C. D.1 4.已知∠A为锐角,且cosA≤,那么( ) A.0°<∠A≤60° B.60°≤∠A<90° C.0°<∠A≤30° D.30°≤∠A<90° 5.在△ABC中,∠A、∠B都是锐角,且sinA=,cosB=,则△ABC的形状是( ) A.直角三角形 B.钝角三角形 C.锐角三角形 D.不能确定 6.如图Rt△ABC中,∠ACB=90°,CD⊥AB于D,BC=3,AC=4,设∠BCD=a,则tana的值为( ). A. B. C. D. 7.当锐角a>60°时,cosa的值( ). A.小于 B.大于 C.大于 D.大于1 8.在△ABC中,三边之比为a:b:c=1::2,则sinA+tanA等于( ). A. 9.已知梯形ABCD中,腰BC长为2,梯形对角线BD垂直平分AC,若梯形的高是,则∠CAB等于( ) A.30° B.60° C.45° D.以上都不对 10.sin272°+sin218°的值是( ). A.1 B.0 C. D. 11.若(tanA-3)2+│2cosB-│=0,则△ABC( ). A.是直角三角形 B.是等边三角形 C.是含有60°的任意三角形 D.是顶角为钝角的等腰三角形 二、填空题. 12.设α、β均为锐角,且sinα-cosβ=0,则α+β=_______. 13.的值是_______. 14.已知,等腰△ABC的腰长为4,底为30°,则底边上的高为______,周长为______. 15.在Rt△ABC中,∠C=90°,已知tanB=,则cosA=________. 16.正方形ABCD边长为1,如果将线段BD绕点B旋转后,点D落在BC的延长线上的点D′处,那么tan∠BAD′=________. 17.在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,得的值为_______. 三、解答题. 18.求下列各式的值. (1)sin30°·cos45°+cos60°;(2)2sin60°-2cos30°·sin45° (3); (4)-sin60°(1-sin30°). (5)tan45°·sin60°-4sin30°·cos45°+·tan30° (6)+cos45°·cos30° 19.在△ABC中,AD是BC边上的高,∠B=30°,∠C=45°,BD=10,求AC. 20.如图,∠POQ=90°,边长为2cm的正方形ABCD的顶点B在OP上,C为CQ上,且∠OBC=30°,分别求点A,D到OP的距离. 21.已知sinA,sinB是方程4x2-2mx+m-1=0的两个实根,且∠A,∠B是直角三角形的两个锐角,求: (1)m的值;(2)∠A与∠B的度数. 22.如图,自卸车车厢的一个侧面是矩形ABCD,AB=3米,BC=0.5米,车厢底部距离地面1.2米,卸货时,车厢倾斜的角度=60°,问此时车厢的最高点A距离地面是多少米?(精确到0.1m) 23.如图,由于水资源缺乏,B、C两地不得不从黄河上的扬水站A处引水,这就需要在A、B、C之间铺设地下输水管道.有人设计了三种铺设方案:如图(1)、(2)、(3),图中实线表示管道铺设线路,在图(2)中,AD⊥BC于D;在图(3)中,OA=OB=OC.为减少渗漏,节约水资源,并降低工程造价,铺设线路应尽量缩短.已知△ABC恰好是一个边长是a的等边三角形,请你通过计算,判断哪个铺设方案最好. 第3课时作业设计(答案) 一、1.C 2.B 3.D 4.B 5.B 6.A 7.A 8.A 9.B 10.A 11.A 二、12.90° 13. 14.2,12+8 15. 16. 17. 三、 18.(1) (5); (6)0 19.∵AD是BC边上的高, ∴△ABD和△ACD都是直角三角形. ∵=tan30°,BD=10, ∴AD=. ∴=sinC, ∴AC=. 20.过点A、D分别作AE⊥OP,DF⊥OP,DG⊥OQ,垂足分别为E、F、G. 在正方形ABCD中,∠ABC=∠BCD=90°. ∵∠OBC=30°,∴∠ABE=60°. 在Rt△AEB中,AE=AB·sin60°=2×=(cm). ∵四边形DFOG是矩形,∴DF=GO. ∵∠OBC=30°,∴∠BCO=60°,∴∠DCG=30°. 在Rt△DCG中,CG=CD·cos30°=2×=(cm). 在Rt△BOC中,OC=BC=1. 21.m=2+1 A=45° B=45° 22.A距地面4.8m 23.(1)所示方案的线路总长为AB+BC=2a. (2)在Rt△ABD中,AD=ABsin60°=a, ∴(2)所示方案的线路总长为AD+BC=(+1)a. (3)延长AO交BC于E,∵AB=AC,OB=OC,∴OE⊥BC,BE=EC=. 在Rt△OBE中,∠OBE=30°,OB==a. ∴(3)所示方案的线路总长为OA+OB+OC=3OB=a. 比较可知,a<(+1)a<2a,∴图(3)所示方案最好. 28.1.4 利用计算器求三角函数值 第4课时 复习引入 教师讲解:通过上面几节的学习我们知道,当锐角A是30°、45°或60°等特殊角时,可以求得这些特殊角的正弦值、余弦值和正切值;如果锐角A不是这些特殊角,怎样得到它的三角函数值呢?我们可以借助计算器来求锐角的三角函数值. 探究新知 (一)已知角度求函数值 教师讲解:例如求sin18°,利用计算器的sin键,并输入角度值18,得到结果sin18°=0.309016994. 又如求tan30°36′,利用tan键,并输入角的度、分值,就可以得到答案0.591398351. 利用计算器求锐角的三角函数值,或已知锐角三角函数值求相应的锐角时,不同的计算器操作步骤有所不同. 因为30°36′=30.6°,所以也可以利用tan键,并输入角度值30.6,同样得到答案0.591398351. (二)已知函数值,求锐角 教师讲解:如果已知锐角三角函数值,也可以使用计算器求出相应的锐角.例如,已知sinA=0.5018;用计算器求锐角A可以按照下面方法操作: 依次按键2ndf sin,然后输入函数值0.5018,得到∠A=30.11915867°(如果锐角A精确到1°,则结果为30°). 还可以利用2ndf °’”键进一步得到∠A=30°07′08.97″(如果锐角A精确到1′,则结果为30°8′,精确到1″的结果为30°7′9″). 使用锐角三角函数表,也可以查得锐角的三角函数值,或根据锐角三角函数值求相应的锐角. 教师提出:怎样验算求出的∠A=30°7′9″是否正确?让学生思考后回答,然后教师总结:可以再用计算器求30°7′9″的正弦值,如果它等于0.5018,则我们原先的计算结果就是正确的. 随堂练习 课本第84页练习第1、2题. 课时总结 已知角度求正弦值用sin键;已知正弦值求小于90°的锐角用2ndf sin键,对于余弦与正切也有相类似的求法. 教后反思 _____________________________________________________________________ _____________________________________________________________________ 第4课时作业设计 课本练习 做课本第85页习题28.1复习巩固第4题,第5题. 双基与中考 (本练习除了作为本课时的课外作业之外,余下的部分作为下一课时(习题课)学生的课堂作业,学生可以自己根据具体情况划分课内、课外作业的份量) 一、选择题. 1.如图1,Rt△ABC中,∠C=90°,D为BC上一点,∠DAC=30°,BD=2,AB=2,则AC的长是( ). A. B.2 C.3 D. (1) (2) (3) 2.如图2,从地面上C、D两处望山顶A,仰角分别为35°、45°,若C、D两处相距200米,那么山高AB为( ). A.100(+1)米 B.100米 C.100米 D.200米 3.如图3,两建筑物的水平距离为s米,从A点测得D点的俯角为α,测得C点的俯角为β,则较低的建筑物的高为( ). A.s·tanα米 B.s·tan(β-α)米 C.s(tanβ-tanα)米 D.米 4.已知:A、B两点,若由A看B的仰角为α,则由B看A的俯角为( ). A.α B.90°-α C.90°+α D.180°-α 5.如图4,从山顶A望地面C、D两点,测得它们的俯角分别是45°和30°,已知CD=100m,点C在BD上,则山高AB等于( ). A.100m B.50m C.50m D.50(+1)m (4) (5) (6) 6.已知楼房AB高50m,如图5,铁塔塔基与楼房房基间水平距离BD为50m,塔高DC为m,下列结论中正确的是( ). A.由楼顶望塔顶仰角为60° B.由楼顶望塔基俯角为60° C.由楼顶望塔顶仰角为30° D.由楼顶望塔基俯角为30° 7.如图6,一台起重机的机身高AB为20m,吊杆AC的长为36m,吊杆对水平线的倾角可以从30°转到80°,则这台起重机工作时吊杆端点C离地面的最大高度和离机身的最远水平距离分别是( ). A.(36+20)m和36·tan30°m B.36·sin80°m和36·cos30°m C.(36sin30°+20)m和36·cos30°m D.(36sin80°+20)m和36·cos30°m 8.观察下列各式:(1)sin59°>sin28°;(2)0<cosα<1(α是锐角); (3)tan30°+tan60°=tan90°;(4)tan44°·cot44°=1,其中成立的有( ). A.1个 B.2个 C.3个 D.4个 9.角a为锐角,且cosα=,那么α在( )。 A.0°与30°之间 B.30°与45°之间 C.45°与60°之间 D.60°与90°之间 10.如图7,沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B,取∠ABD=145°,BD=500米,∠D=55°,要使A、C、E成一直线,那么开挖点E离点D的距离是( ). A.500sin55°米 B.500cos55°米 C.500tan55°米 D.500cot55°米 (7) (8) (9) 11.如图8,在菱形ABCD中,∠ABC=60°,AC=4,则BD的长为( ). A.8 B.4 C.2 D.8 12.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,则下列等式成立的是( ). A.b=c·cosA B.b=a·sinB C.a=b·tanB D.b=c·cotA 二、填空题 13.求sin72°的按键顺序是_________. 14.求tan25°42°的按键顺序是__________. 15.求cot32°19′的按键顺序是__________. 16.用计算器cos18°44′25″=__________.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 锐角三角函数 新疆塔城第三中学九年级数学 第28章锐角三角函数教案 新疆 塔城 第三中学 九年级 数学 28 锐角三角 函数 教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文