山东省济南市槐荫区九年级数学下册 第2章 二次函数 2.4 二次函数的应用 2.4.2 二次函数的应用教案 (新版)北师大版-(新版)北师大版初中九年级下册数学教案.doc
《山东省济南市槐荫区九年级数学下册 第2章 二次函数 2.4 二次函数的应用 2.4.2 二次函数的应用教案 (新版)北师大版-(新版)北师大版初中九年级下册数学教案.doc》由会员分享,可在线阅读,更多相关《山东省济南市槐荫区九年级数学下册 第2章 二次函数 2.4 二次函数的应用 2.4.2 二次函数的应用教案 (新版)北师大版-(新版)北师大版初中九年级下册数学教案.doc(7页珍藏版)》请在咨信网上搜索。
2.4.2二次函数的应用 一、教学目标 1.经历探索T恤衫销售过程中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,感受数学的应用价值. 2.掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值. 二、课时安排 1课时 三、教学重点 运用二次函数的知识求出实际问题的最大值、最小值. 四、教学难点 运用二次函数的知识求出实际问题的最大值、最小值. 五、教学过程 (一)导入新课 某超市有一种商品,进价为2元,据市场调查,销售单价是13元时,平均每天销售量是50件,而销售价每降低1元,平均每天就可以多售出10件. 若设降价后售价为x元,每天利润为y元,则y与x之间的函数关系是怎样的? (二)讲授新课 活动1:小组合作 二次函数y=a(x-h)2+k(a 0),顶点坐标为(h,k),则 ①当a>0时,y有最小值k; ②当a<0时,y有最大值k 【探究】某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析,销售单价是多少时,可以获利最多? 【解析】设销售单价为x (x≤13.5)元,那么 销售量可以表示为 : 件; 每件T恤衫的利润为: 元; 所获总利润可以表示为: 元; 即y=-200x2+3 700x-8 000=-200(x-9.25)2+9 112.5 ∴当销售单价为 元时,可以获得最大利润, 最大利润是 元. 活动2:探究归纳 先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值. (三)重难点精讲 例题2(武汉·中考)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元(x为10的整数倍). (1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围. (2)设宾馆一天的利润为w元,求w与x的函数关系式. (3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元? 【解析】 (1)y=50- ; (2)w=(180+x-20)y=(180+x-20)(50-)= (3)因为w= 所以x==170时,w有最大值,而170>160,故由函数 性质知x=160时,利润最大,此时订房数y=50- =34, 此时的利润为10 880元. 例题3(青海·中考)某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克. (1)现该商场要保证每天盈利1 500元,同时又要顾客得到实惠,那么每千克应涨价多少元? (2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多? 【解析】(1)设每千克应涨价x元,列方程得: (5+x)(200-10x)=1 500, 解得:x1=10, x2=5.因为要顾客得到实惠,5<10 所以 x=5. 答:每千克应涨价5元. (2)设商场每天获得的利润为y元,则根据题意,得 y=( x +5)(200-10x)= -10x2+150x+1 000, 当x=时,y有最大值. 因此,这种水果每千克涨价7.5元,能使商场获利最多 (四)归纳小结 “何时获得最大利润” 问题解决的基本思路. 1.根据实际问题列出二次函数关系式. 2.根据二次函数的最值问题求出最大利润 (五)随堂检测 1.(株洲·中考)某广场有一喷水池,水从地面喷出,如图,以水平地面为轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-(x-2)2+4(单位:米)的一部分,则水喷出的最大高度是( ) A.4米 B.3米 C.2米 D.1米 2.(德州·中考)为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5 000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次性购买100个以上,则购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3 500元/个.乙商家一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元. (1)分别求出y1,y2与x之间的函数关系式. (2)若市政府投资140万元,最多能购买多少个太阳能路灯? 3.桃河公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在距离OA 1m处达到最大高度2.25m. 如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外? 4.(青岛·中考)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数: (1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润? (2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元? (3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元? (成本=进价×销售量) 【答案】 1. 【解析】选A. 抛物线的顶点坐标为(2,4),所以水喷出的最大高度是4米. 2. 【解析】(1)由题意可知, 当x≤100时,购买一个需5 000元,故y1=5 000x 当x>100时,因为购买个数每增加一个,其价格减少10元但售价不得低于3 500元/个,所以x≤ 即100<x≤250时,购买一个需5 000-10(x-100)元,故y1=6 000x-10x2; 当x>250时,购买一个需3 500元,故y1=3 500x; (2) 当0≤x≤100时,y1=5 000x≤500 000<1 400 000; 当100<x≤250时, y1=6 000x-10x2=-10(x-300)2+900 000<1 400 000; ∴由得到x=400 由得到 故选择甲商家,最多能购买400个太阳能路灯 3. 【解析】建立如图所示的坐标系,根据 题意得,点A(0,1.25),顶点B(1,2.25). 设抛物线的表达式为y=a(x-h)2+k,由待定系数法可求得抛物线表达式为:y=-(x-1)2+2.25. 当y=0时,得点C(2.5,0);同理,点D(-2.5,0). 根据对称性,那么水池的半径至少要2.5m, 才能使喷出的水流不致落到池外. 4.解析:(1)由题意,得:w = (x-20)·y =(x-20)·(-10x+500) =-10x2+700x-10 000 当 时,w有最大值. 答:当销售单价定为35元时,每月可获得最大利润. (2)由题意,得: 解这个方程得:x1 = 30,x2 = 40. 答:李明想要每月获得2 000元的利润,销售单价应定为30元或40元. (3)∵ ∴抛物线开口向下. ∴当30≤x≤40时,w≥2 000. ∵x≤32, ∴当30≤x≤32时,w≥2 000. 设成本为P(元),由题意,得:P=20(-10x+500)= -200x+10 000, ∵k=-200<0,∴P随x的增大而减小. ∴当x = 32时,P最小=3 600. 答:想要每月获得的利润不低于2 000元,每月的成本最少需要3 600元. 六.板书设计 2.4.2二次函数的应用 探究: 例题2: 例题3: “何时获得最大利润” 问题解决的基本思路. 1.根据实际问题列出二次函数关系式. 2.根据二次函数的最值问题求出最大利润 七、作业布置 课本P49练习 练习册相关练习 八、教学反思- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省济南市槐荫区九年级数学下册 第2章 二次函数 2.4 二次函数的应用 2.4.2 二次函数的应用教案 新版北师大版-新版北师大版初中九年级下册数学教案 山东省 济南市 槐荫区 九年级 数学
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:山东省济南市槐荫区九年级数学下册 第2章 二次函数 2.4 二次函数的应用 2.4.2 二次函数的应用教案 (新版)北师大版-(新版)北师大版初中九年级下册数学教案.doc
链接地址:https://www.zixin.com.cn/doc/7635989.html
链接地址:https://www.zixin.com.cn/doc/7635989.html