九年级数学上册 第21章 一元二次方程教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc
《九年级数学上册 第21章 一元二次方程教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc》由会员分享,可在线阅读,更多相关《九年级数学上册 第21章 一元二次方程教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc(5页珍藏版)》请在咨信网上搜索。
一元二次方程 一、教材分析 本章的主要内容包括: 21.1 一元二次方程及其有关概念, 21.2 一元二次方程的解法(配方法、公式法、因式分解法), 21.3 运用一元二次方程分析和解决实际问题。 其中解一元二次方程的基本思路和具体解法是本章的重点内容。 方程是科学研究中重要的数学思想方法,也是后续内容学习的基础和工具,本章是对一元一次方程知识的延续和深化,同时为二次函数的学习作好准备。 数学建模思想的教学在本章得到进一步渗透和巩固。 二、学情分析 学生在七年级和八年级已经学习了整式、分式、二次根式、一元一次方程、二元一次方程、分式方程,在此基础上本章将从实际问题入手,抽象出一元二次方程的概念及一元二次方程的一般形式. 根据已学的平方根的意义来解形如x2=p(p≥0)的一元二次方程,然后迁移到解(mx+n)2=p(p≥0)型的一元二次方程.解二次方程的基本策略是将其转化为一元一次方程——降次。本单元首先通过简单的一元二次方程,引导学生认识直接开平方法解方程;然后讨论比较复杂的一元二次方程,通过对比已变为完全平方式的方程,使学生认识配方法的基本原理并掌握其具体方法;以配方法为基础推导一元二次方程的求根公式,于是得到公式法。最后讨论因式分解法。 这样容易完成学习内容。 三、教学目标 (结合课标) 1.理解一元二次方程的定义关键注意三点:整式、一个未知数、最高次数为2。 对一元二次方程理解时,一定注意“a≠0”这一条件。 把一个方程化为一般形式时应用了解一元一次方程的变形方法:去分母---去括号---移项---合并同类项。 注意:①当a是负值时,一般转化为正数; ②多给出b=0或c=0或b、c同时为0的例子。如:。 2. 直接开平方法、配方法、公式法和因式分解法是一元二次方的基本解法,解二次方程的基本策略是将其转化为一元一次方程——降次。本单元首先通过简单的一元二次方程,引导学生认识直接开平方法解方程;然后讨论比较复杂的一元二次方程,通过对比已变为完全平方式的方程,使学生认识配方法的基本原理并掌握其具体方法;以配方法为基础推导一元二次方程的求根公式,于是得到公式法。最后讨论因式分解法。本节知识学习时,注意对相关知识的复习、联系,多鼓励学生应用不同的解法发表自己的意见,体会数学思想方法的作用,逐步养成主动探究和应用的习惯。 3. 结合实际问题,分别讨论传播问题、增长率问题、几何图形面积问题。本节的重点是分析实际问题中的数量关系并以方程的形式进行表示。体现了数学建模思想的“螺旋式上升,不断深化”的理念。 (1)直接开平方法(1课时):初一已学过平方根和算术平方根,学生见过此类型,当时只是求值,没有提到过一元二次方程,现在变成正规解法。教学时,计划由浅入深的安排一下类型题: ① x2=a (a>0) bx2=a (a、b同号,b≠0) ③ (x-b)2=a (a>0) ④ m(x-b)2=a (a、m同号,m≠0) ⑤ m(nx-b)2=a (a、m同号,m、n≠0) (2)配方法(2课时):配方法不仅是解一元二次方程的一种基本方法,而且在以后讨论二次函数等其他数学概念时也离不开配方法。因此,配方法在数学中成为一种很重要的式子变形。它的背后隐含了创造条件实现化归的思想,这种思想对培养学生的数学能力影响很大。教学中对配方法及化归思想应充分重视。引导学生理解这种方法的道理,结合道理去记忆配方的具体步骤。 第一课时:安排a=1的情况,主要掌握配方的方法:方程两边加一次项系数一半的平方。 注意:如x2-4x-1=0中,一次项系数为负数时易出错。 第二课时:安排a≠1的情况,总结出配方法的步骤: 方程两边除以二次项系数,把方程化为二次项系数为1的类型; 方程两边加一次项系数一半的平方,配成完全平方式;③直接开平方; ④写出结果。 (3)公式法(2课时) 由配方法引出求根公式。推导求根公式时,特别给出条件“当b2-4ac≥0时”。教学中应当使学生认识到这一条件是根据非负而产生的,如果b2-4ac<0,就有<0.这在实数范围是不可能的。因此,这里要约定b2-4ac≥0.得出求根公式后,可知方程ax2+bx+c=0(a≠0)根是由系数a、b、c所确定的。教科书中没有提出判别式的名称,但在公式法之后进行了归纳,总结了b2-4ac值的三种情况和他们对应的一元二次方程根的三种情况:①有两个不等的实数根;②有两个相等的实数根;①②合称为有实数根,③没有实数根,但不能说没有根,这时方程的根是虚根。 教学时总结出公式法解题的一般步骤: 化为一般式; 指出a、b、c,带符号; 写出求根公式; 代入求解。 (4)因式分解法(1课时):教科书中所用的因式分解法包括提公因式和公式法,这与以前学过的因式分解方法是一致的。对于某些一元二次方程,虽然用配方法和公式法可以解,但是用因式分解的方法解起来更简便。 (5)习题课(1课时) 选择适当的方法解一元二次方程。 21.2.4一元二次方程根与系数的关系(1课时):本节内容为选学内容,进一步加深对一元二次方程及其根的认识。利用一元二次方程根与系数的关系,可以灵活地解决许多问题,建议讲授本节内容为以后的学习做准备。但是在难度上要有所控制。 学法点拨: 公式法、配方法是对于任何一元二次方程都适用的方法,每个学生必须掌握,但解题时应先考虑因式分解法,当方程符合ax2=c(a、c同号,a≠0)时,可用直接开平方法解方程。 解一元二次方程时,要根据方程实际,灵活选择适当的方法。 对于一元二次方程的一般形式ax2+bx+c=0(a≠0),当b2-4ac≥0时,可用公式法,一定要注意b2-4ac的取值问题。 配方法要先配方再降次;“配方法”不仅应用在一元二次方程中,注意配方在其他方面的应用。 因式分解法要先使方程的一边为两个一次因式相乘,另一边为0,再分别使各一次因式为0。配方法和公式法适用于所有的一元二次方程,因式分解法应用时要观察方程的特点,灵活选择方法。 易错点 用因式分解法没有注意方程是否写成A*B=0形式。 如,解方程(x-1)(x-3)=8, 误解为 x1=1, x2=3. (2) 用公式法解方程时,没有化为一般式,造成符号错误或混淆a、b、c。如,解方程x2-4x=2,误认为a=1,b=—4,c=2. (3)丢根。如,解方程3(x+2)=x2+2x,两边同时除以(x+2),只解得x=3. 21.3 实际问题与一元二次方程 结合实际问题,分别讨论传播问题、增长率问题、几何图形面积问题。本节的重点是分析实际问题中的数量关系并以方程的形式进行表示。体现了数学建模思想的“螺旋式上升,不断深化”的理念。 教学重点:进一步反映一元二次方程与实际问题的密切联系,再次体现数学建模思想,加强培养运用一元二次方程分析和解决实际问题的能力。 教学难点:在探究过程中正确地建立一元二次方程。 突破难点的关键:弄清问题背景,把有关数量关系分析透彻,特别是找出可以作为列方程依据的主要相等关系。 学法点拨: 列一元二次方程解应用题的一般步骤为:审、设、列、解、验、答。 具体过程:(1)审题,找等量关系; ------- 关键 (2)设未知数; ------- 注意单位 (3)列方程; (4)解方程; (5)检验; -------注意是否符合实际意义 (6)写出答案; (7)答话。 增长率问题常用公式 a(1±x)2=b ,a为原数,b为增长或降低后的数(即现在的数),x为增长率或降低率,2表示两次增长或降低。 易错点 ①审题不清,误解题意,不能正确地找出等量关系; ②解方程后未经检验就盲目作答。 ③检查方程两根是否符合实际意义,尤其当两根都是正数的情况。如教材,探究2问题中,方程两根都是正数,但他们并不都适合问题的解。必须根据它们的值的大小来确定哪个合乎实际。这种取舍更多的要考虑问题的实际意义,教学中应注意培养学生将数学知识与实际问题相结合的能力。 四、教学重点难点 应对措施和思路 教学重点 1.一元二次方程及有关概念的理解. 2. 一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法。 教学难点 一元二次方程及有关概念的理解. 选择合适的解法 五、课时安排 21.1 一元二次方程 2课时 21.2 降次——解一元二次方程 7课时 *21.2.4 一元二次方程根与系数的关系 1课时 21.3 实际问题与一元二次方程 3课时 小结 2课时 六、知识结构 七、其它补充- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级数学上册 第21章 一元二次方程教案 新版新人教版-新版新人教版初中九年级上册数学教案 九年级 数学 上册 21 一元 二次方程 教案 新版 新人 初中 数学教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:九年级数学上册 第21章 一元二次方程教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc
链接地址:https://www.zixin.com.cn/doc/7635944.html
链接地址:https://www.zixin.com.cn/doc/7635944.html