九年级数学第25章概率初步讲学稿人教版.doc
《九年级数学第25章概率初步讲学稿人教版.doc》由会员分享,可在线阅读,更多相关《九年级数学第25章概率初步讲学稿人教版.doc(27页珍藏版)》请在咨信网上搜索。
垦利县数学学科师生共用讲学稿 学习目标: 知识与技能:通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。 过程与方法:历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。 情感态度和价值观:体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象。 学习重点:随机事件的特点 学习难点:对生活中的随机事件作出准确判断 学习过程 一、学前准备 1.自学课本136-137页,写下疑惑摘要。 2.下列问题哪些是必然发生的?哪些是不可能发生的? (1)太阳从西边下山; (2)某人的体温是100℃; (3)a2+b2=-1(其中a,b都是实数); (4)水往低处流; (5)酸和碱反应生成盐和水; (6)三个人性别各不相同; (7)一元二次方程x2+2x+3=0无实数解。 3.引发思考 我们把上面的事件(1)、(4)、(5)、(7)称为必然事件,把事件(2)、(3)、(6)称为不可能事件,那么请问:什么是必然事件?什么又是不可能事件呢?它们的特点各是什么? 二、自学、合作探究 (一)自学、相信自己 活动1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。请考虑以下问题: (1)抽到的序号是0,可能吗?这是什么事件? (2)抽到的序号小于6,可能吗?这是什么事件? (3)抽到的序号是1,可能吗?这是什么事件? (4)你能列举与事件(3)相似的事件吗? 根据学生回答的具体情况,教师适当地加点拔和引导。 活动2:小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。请考虑以下问题,掷一次骰子,观察骰子向上的一面: (1)出现的点数是7,可能吗?这是什么事件? (2)出现的点数大于0,可能吗?这是什么事件? (3)出现的点数是4,可能吗?这是什么事件? (4)你能列举与事件(3)相似的事件吗? (二)思索、交流 (1)上述两个活动中的两个事件(3)与必然事件和不可能事件的区别在哪里? (2)怎样的事件称为随机事件呢? 三、应用练习,巩固新知 练习:指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。 (1)两直线平行,内错角相等; (2)刘翔再次打破110米栏的世界纪录; (3)打靶命中靶心; (4)掷一次骰子,向上一面是3点; (5)13个人中,至少有两个人出生的月份相同; (6)经过有信号灯的十字路口,遇见红灯; (7)在装有3个球的布袋里摸出4个球 (8)物体在重力的作用下自由下落。 (9)抛掷一千枚硬币,全部正面朝上。 四、学习体会 1.如何对生活中的必然事件,不可能事件,随机事件做出准确判断? 2.体会随机事件有什么的特点? 五、自我测试 1. 指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件? (1)同旁内交互补,两直线平行 (2)东营明天下大雨 (3)1+1=3 (4)掷一次骰子,向上一面是6点; (5)11个人中,至少有两个人出生的月份相同; (6)中国足球队夺得世界杯冠军 (7)在装有3个红球的布袋里摸出绿球 (8)对顶角相等 (9)抛掷一千枚硬币,全部反面朝上。 (10)数学测试你得满分 六、布置作业。 课本144页1题 垦利县数学学科师生共用讲学稿 年级:九年级 内容:25.1.1 随机事件(第2课时)课型:新授 执笔:唐春英 审核:张群 定稿:张德军 使用时间: 学习目标: 知识技能:通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。 过程和方法:历经“猜测—动手操作—收集数据—数据处理—验证结果”,及时发现问题,解决问题,总结出随机事件发生的可能性大小的特点以及影响随机事件发生的可能性大小的客观条件。 情感态度和价值观:在试验过程中,感受合作学习的乐趣,养成合作学习的良好习惯;得出随机事件发生的可能性大小的准确结论。需经过大量重复的试验,让学生从中体验到科学的探究态度。 学习重点:对随机事件发生的可能性大小的定性分析 学习难点:理解大量重复试验的必要性。 学习过程 一、学前准备 1.自学课本138-139页,写下疑惑摘要。 2、摸球试验:袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B,提出问题: (1)事件A和事件B是随机事件吗? (2)哪个事件发生的可能性大? 二、自学、合作探究 1、把学生分成2人一组,其中一人把球搅均匀,另一人摸球并把结果记录在表1中。 事件A发生的次数 事件B发生的次数 结果(指哪个事件发生的次数多) 10次摸球 20次摸球 2、小组汇报试验结果,教师统计结果填于表2。 得到结果1的组数 得到结果2的组数 10次摸球 20次摸球 注:结果1指事件A发生的次数多,结果2指事件B发生的次数多。 3、提出问题 (1)“10次摸球”的试验中,事件A发生的可能性大的有几组?“20次摸球”的试验中呢? (2)你认为哪种试验更能获得较正确结论呢? (3)为了能够更大可能地获得正确结论,我们应该怎样做? 4、进行大量重复试验,验证猜测的正确性。 教师请同学们进行400次重复的“摸球”试验,教师提问: 如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性? 待学生回答后,教师把结果统计在表中。 事件A发生的次数 事件B发生的次数 400次摸球 5、对表中的数据进行分析,得出结论。 提问:通过上述试验,你认为,要判断同一试验中哪个事件发生可能性的较大,必须怎么做? 先让学生回答,回答时教师注意纠正学生的不准确的用语,最后由教师总结:要判断随机事件发生的可能性大小,必须经过大量重复试验。 6、对试验结果作定性分析。 在经过大量重复摸球以后,我们可以确定,事件A发生的可能性大于事件B发生的可能性,请同学们分析一下其原因是什么? 三、练习反馈 1、一个袋子里装有20个形状、质地、大小一样的球,其中4个白球,2个红球,3个黑球,其它都是黄球,从中任摸一个,摸中哪种球的可能性最大? 2、一个人随意翻书三次,三次都翻到了偶数页,我们能否说翻到偶数页的可能性就大? 3、袋子里装有红、白两种颜色的小球,质地、大小、形状一样,小明从中随机摸出一个球,然后放回,如果小明5次摸到红球,能否断定袋子里红球的数量比白球多?怎样做才能判断哪种颜色的球数量较多? 4、已知地球表面陆地面积与海洋面积的比均为3:7。如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大? 四、学习体会 1. 体会大量重复试验的必要性。 2. 对随机事件发生的可能性大小的定性分析 五、自我测试 1.袋子中装有3个黑球、2个红球、4个白球,这些球除颜色外,形状、大小、质地等完全相同,再看不到球的条件下,随机的从袋子中摸出一个球。 (1)这个球是黑球、红球还是白球 (2)如果三种球都有可能被摸出,那么摸出三种球的可能性一样大吗? 2.在上一题中,摸出绿球的可能性大吗?这是什么事件? 六、 布置作业。 课本144页2题 垦利县数学学科师生共用讲学稿 年级:九年级 内容:概率的意义 (1课时) 课型:新授 执笔: 李颖坡 审核:周锡花 定稿:张德军 使用时间: 学习目标: 1、 记忆并理解概率的定义,并从频率稳定性的角度了解概率的意义。 2、 让学生经历试验、统计、分析、归纳、总结,进而了解并感受概率的意义。 3、 学会怎样用概率描述随机事件发生的可能性的大小。 学习重点:对概率意义的正确理解 学习难点:对随机事件的统计规律的深刻认识。 学习过程 一、学前准备 1、 把全班学生分成10个小组做抛掷硬币试验,每组同学抛掷100次,并整理获得的实验数据记录在下面的统计表中。 抛掷次数(n) 100 200 300 400 500 600 700 800 900 1000 “正面向上”的次数(m) “正面向上”的频率(m/n) 根据数据利用描点的方法绘制出函数图像并总结其中的规律。 2、下表记录了一名球员在罚球线上投篮的结果 投篮次数(n) 50 100 150 200 250 300 500 投中次数(m) 28 60 78 104 123 152 251 投中频率(m/n) 计算表中投中的频率(精确到0.01)并总结其规律。 二、 自学、合作、探究 1、 根据抛掷硬币的频率分布图规律总结出抛掷硬币的概率,并用自己的语言描述出概率的定义。根据频率的取值范围总结出概率的取值范围。 2、 同学之间相互讨论总结出概率的定义和取值范围。 3、 同学们之间相互讨论,分析总结频率与概率有什么样的区别于联系?最后由教师点评补充,学生做出最后总结。 (1)一般的,频率是随着试验次数的变化而 。 (2)概率是一个客观的 。 (3)频率是概率的近似值,概率是频率的稳定制,他是频率的科学抽象,当试验次数越来越多时,频率围绕概率摆动的平均幅度会越来越 ,即频率靠近概率。 4、 在一个不透明的口袋中装着大小、外形一模一样的5个红球、3个蓝球、2个白球,从中任意摸出一球则: (1)P(摸到红球)= (2)P(摸到蓝球)= (3)P(摸到白球)= 5、 在1、2、3、4四个数字中,取任意两个数,则他们都是偶数的概率为 。 6、 从一批种子中抽取若干粒,在同一条件下进行发芽试验,有关数据如下: 种子粒数 50 100 200 500 1000 3000 5000 发芽种子粒数 45 93 185 459 912 2731 4508 发芽种子频率 计算表中发芽种子的频率(精确到0.01),估计发芽种子的概率。 三、 学习体会 1、 体会一下试验、统计、分析、归纳、总结,进而了解并感受概率的定义的过程。 2、 知道频率与概率的定义和取值范围。 3、 了解频率与概率的区别于联系。 4、 明确概率的意义是什么?(从数量上刻画了一个随机事件发生的可能性的大小) 5、 能够利用概率的定义和意义进行解题。 四、 自我检测 1、 一个事件发生的概率不可能是( ) A、 0 B、 C、 1 D、 2、 事件的概率为1, 事件的概率为0,如果A为 事件那么0<P(A)<1。 3、任意抛掷一枚均匀的硬币,前9次都是正面朝上,当他掷第10次时,你认为正面朝上的概率是 。 4、小明从一定高度掷一枚均匀的骰子,他已经连续掷了5次都是奇数,小亮说:“小明第6次掷一枚均匀的骰子,点数是偶数的可能性非常大”。你同意吗?为什么? 5、一盆中装有各色小球12只,其中5只红球、4只黑球、2只白球、1只绿球,求 (1) 从中取出一球为红球或黑球的概率。 (2) 从中取出一球为红球或黑球或白球的概率。 五、 自我提高 1、 有5条线段,其长分别为1、3、5、7、9个单位,求从中任取3条能构成三角形的概率。 2、 能否设计一种转盘游戏,圆盘被分成若干等份分别涂成红、黄、蓝三种颜色,使得转出红区域的概率为,转出黄区域的概率为,转出蓝区域的概率为。如果能,给出一种设计;如果不能,说明理由。 垦利县数学学科师生共用讲学稿 年级:九年级 内容:25.2用列举法求概率(第1课时) 课型:新授 执笔: 周锡花 审核:孙万生 定稿:张德军 使用时间: 学习目标: 1. 理解 P(A)= (在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的意义。 2.应用 P(A)= 解决一些实际问题。 学习重点:理解 P(A)= 并运用它解决实际问题。 学习难点:通过试验理解 P(A)= 并运用它解决一些具体问题。 学习过程: 一、 课前准备: (1) 概率是什么? (2) P(A) 的取值范围是什么? (3) A是必然事件,B是不可能事件,C是随机事件,请你画出数轴把三个量表示出来。 二、试验探究: 试验1 从分别标有1、2、3、4、5号的5根纸签中随机抽取一根,抽出的签上的号码有( )种可能,即( )由于纸签的形状、大小相同,又是随机抽取的,所以我们认为:每个号码抽到的可能性( )都是( )。 试验2 掷一个骰子,向上一面的点数有( )种可能,即( )由于骰子的构造、质地均匀,又是随机掷出的所以我们断言:每种结果的可能性( )都是( )。 观察与思考: 以上两个试验有两个共同特点: 1.( ) 2.( ) 如何分析出此类试验中事件的概率? 归纳: 一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=( )。且( )≤ P(A) ≤ ( )。 三、实践应用: 1. 掷一个骰子,观察向上的一面的点数,求下列事件的概率: (1) 点数为2; (2) 点数为奇数; (3) 点数大于2小于5; 2、如图(2)是计算机中“扫雷”游戏的画面,在一个有9 × 9个小方格的正方形雷区中,随机埋藏着10颗地雷每个小方格内最多只能埋藏1颗地雷。小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A区域(划线部分),A区域外的部分记为B区域,数字3表示在A区域中有三颗地雷,那么,第二步应该踩在A区域还是B区域? 3 思考: 如果小王在游戏开始时踩中的第一个方格上出现了标号1,则下一步踩在哪个区域比较安全? 3、(1)掷一枚质地均匀的硬币的试验有几种可能的结果?它们的可能性相等吗?由此怎样确定“正面向上”的概率? (2)掷两枚硬币,求下列事件的概率: A. 两枚硬币全部正面朝上; B. 两枚硬币全部反面朝上; C. 一枚硬币正面朝上;一枚硬币反面朝上; 思考: “同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗? 四、巩固练习: 袋子中装有红、绿各一小球,随机摸出一个小球后放回,再随机摸出一个,求下列事件的概率: (1) 第一次摸到红球,第二次摸到绿球; (2) 两次都摸到相同颜色的小球; (3) 两次摸到的球中有一个绿球和一个红球; 五、学习小结: 这节课有哪些收获?说说自己哪些不懂,与同学交流一下。 六、自我检测 1.柜子里有20双鞋,取出左脚穿的一只鞋的概率为( ) A B C D不确定 2.投掷一枚质地均匀的骰子,点数小于5的概率为( ) A B C D 3.盒子里有8个除颜色外,其它完全相同的球,若摸到红色的球的概率为3/4 ,则其中红球的个数是( ) A 8 B6 C4 D无法确定 4.数学考试中的选择题一般都是单项选择,即在A、B、C、D四个备选答案中只有一个是正确的,这种选择题任意选一个答案,正确的概率是( ) 5.某中学八年级(1)班有55名学生参加期末数学考试,其中45人及格,从所有考卷中任意抽取一张,抽中不及格的概率为( ) 6.一个袋中装有2个白球,4个红球,6个黄球,这些球除颜色不同外,其它完全相同,从袋中任意摸出一个球,求下列事件的概率 (1). 摸出红球 (2). 摸出白球 (3).摸出不是黄球 ※ 广告牌上“丽晶大酒店”几个字是霓虹灯,几个字一个接一个地亮起来,直至全部亮起来再循环,则路人一眼望去能够看全的概率为多少? 七、巩固提高: 1、袋中装有若干个红球和若干个黄球,它们除了颜色外都相同,任意从中摸出一个球,摸到红球的概率是. (1)若袋中共有8个球,需要几个红球? (2)若袋中有9个红球,则还需要几个黄球? (3)自己设计一个摸球游戏,使摸到红球的概率是. 2.判断下面的结论对否,并说明为什么? 两人各掷一枚硬币,“同时出现正面”的概率等于, 则“不出现正面”的概率等于 1-=。 垦利县数学学科师生共用讲学稿 年级:九年级 内容:25.2用列举法求概率(第2课时) 课型:新授 执笔: 张德军 审核:张群 定稿:张德军 使用时间: 学习目标: 1.进一步在具体情境中了解概率的意义,能够运用列表法计算简单事件发生的概率,并阐明理由. 2.通过应用列表法解决实际问题,提高学生解决问题的能力,发展应用意识. 学习重点::能够运用列表法计算简单事件发生的概率,并阐明理由. 学习难点::判断何时选用列表法求概率更方便. 学习过程: 一. 学前准备 (一)、.思考:(1)具有何种特点的试验称为古典概型? (2)对于古典概型的试验,如何求事件的概率? (二)、做一做: 1、九年级一班共有48名团员要求参加青年自愿者活动。根据需要,团支部从中随机选择12名参加这次活动。该班团员李明参加的概率是 ( ) 2、在不透明的袋子里装有10个乒乓球,其中有2个是黄色的,3个是红色的,其余全是白色的,先拿出每种颜色的乒乓球各一个(不放回),在任意拿出一个是红色的乒乓球的概率是( ) 3、10名学生的身高如下(单位: cm) :159,169,163,170,166,165,172,165,162,163。从中任选一名学生,其身高超过165cm的概率是( ) A. B. C. D. 4、练习:掷一颗普通的正方体骰子,求: (1)“点数为1”的概率; (2)“点数为1或3”的概率; (3)“点数为偶数”的概率; (4)“点数大于2”的概率. 二.自学、合作探究 1.独立思考,解决问题: 同时掷两个质地均匀的骰子,计算下列事件的概率: (1) 两个骰子的点数相同; (2) 两个骰子点数的和是9; (3)至少有一个骰子的点数为2. 2.师生探究,合作交流 (1)上述问题中一次试验涉及到几个因素? 你是用什么方法不重不漏地列出了所有可能的结果,从而解决了上述问题? (2)能找到一种将所有可能的结果不重不漏地列举出来的方法吗?(介绍列表法求概率,让学生重新利用此法做上题) (3)如何把上例中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得到的结果有变化吗? 三.随堂检测 1、填空: (1)将一个转盘分成6等分,分别是红、黄、蓝、绿、白、黑,转动转盘两次,两次能配成“紫色” 的概率是( ) (2)抛掷两枚普通的骰子,出现数字之积为奇数的概率是( ),出现数字之积为偶数的概率是( ) 2、选择: (1)甲、乙两袋均有红、黄色球各一个,分别从两袋中任意取出一球,那么所取出的两球是同色球的概率是( ) A. B. C. D. (2)均匀的正四面体的各面依次标有1、2、3、4四个数字,同时抛掷两个这样的四面体,它们着地一面的数字不同的概率是( ) A. B C D. 1 3.在一个口袋中有四个完全相同的小球,把他们分别标号为1、2、3、4,随机地摸出一个小球,求下列事件的概率: (1)两次取的小球的标号相同; (2)两次取的小球的标号的和等于4. 4.第一盒乒乓球中有4个白球2个黄球,第二盒乒乓球中有3个白球3个黄球,分别从每个盒中随机的取出一个球,求下列事件的概率: (1)取出的两个球都是黄球; (2)取出的两个球中有一个白球一个黄球. 5.在六张卡片上分别写有1——6的整数,随机地抽取一张后放回,再随机的抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少? 四.问题式小结 1.本节课你学到了什么?有什么收获? 2.你有什么疑惑的地方吗? 五.自我提高(作业) 1.有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去打开任意的一把锁,一次打开锁的概率是多少? 2.布袋中有红、黄、蓝三种颜色的球各一个, (1)从中摸出一个球,记录下它的颜色,将它放回布袋,搅匀,再摸出一个球,记下颜色,求得到的两个颜色中有“一红一黄”的概率; (2)如果摸出第一球之后不放回布袋,再摸第二个球,这时得到的两个颜色中有“一红一黄”的概率是多少? 2、 美美是个特别爱美的女孩子,一次和爸爸外出旅游,带了一大包衣服,妈妈问她都带了些什么,她高兴得说:“3件上衣分别是棕色、蓝色和白色,两条长裤分别是黑色和白色。”为了考考美美,妈妈问:“你一共可以配成多少套不同的衣服?如要任意拿出1件上衣和1条长裤,正好配成白色套装的概率是多少?” 六、思维拓展 当一次试验涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法,而当一次试验要涉及三个或更多的因素(例如从3个口袋中去球)时,列表法还方便吗?若不方便,则采用何种方法? 垦利县数学学科师生共用讲学稿 年级:九年级 内容:25.2用列举法求概率(第3课时) 课型:新授 执笔: 孙万升 审核:张昌柱 定稿:张德军 使用时间: 学习目标: 1.进一步理解有限等可能性事件概率的意义。 2.会用树形图求出一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率。 3. 进一步提高分类的数学思想方法,掌握有关数学技能(树形图)。 学习重点:正确鉴别一次试验中是否涉及3个或更多个因素. 学习难点;用树形图法求出所有可能的结果。 一、 知识回顾,引入新知: 问题1 同时掷两个质地均匀的骰子,计算下列事件的概率: (1)两个骰子的点子数相同; (2)两个骰子的点子数的和是9; (3)至少有一个骰子的点数为2 填写表格: 通过预习,尝试用树形图解决该问题: 让学生体验它们各自的特点,关键是对所有可能结果要做到:既不重复也不遗漏。 例 : 甲口袋中装有2个小球,他们分别写有A和B ;乙口袋中装有3个相同 的小球,分别写有C 、D 和E ;丙口袋中装有2个相同的小球,他们分别写有H 和I。 从3个口袋中各随机取出1个小球。 (1) 取出的3个小球上恰好有1个、2个、3个元音字母的概率分别是多少? (2)取出3个小球上全是辅音字母的概率是多少? 分析:弄清题意后,先让学生思考从3个口袋中每次各随机地取出一个球, 共3个球,这就是说每一次试验涉及到3个因素,这样的取法共有多少种呢? 打算用什么方法求得? 学生充分思考并讨论: 第一步可能产生的结果会是什么?------ (A和B), 两者出现的可能性相同吗?分不分先后?写在第一行。 第二步可能产生的结果是什么?--------(C、D和E), 三者出现的可能性相同吗?分不分先后? 从A和B分别画出三个分支,在分支下的第二行分别写上C、D和E。 第三步可能产生的结果有几个?--- 是什么?-------H和I, 两者出现的可能性相同吗? 分不分先后? 从C、D和E分别画出两个分支,在分支下的第三行分别是写上H和I。 (如果有更多的步骤可依上继续)第四步按竖向把各种可能的结果竖着写在下面, 就得到了所有可能的结果的总数。再找出符合要求的种数,就可以利用概率和意 义计算概率了。 合作完成树形图: 教师详细地讲解以上各步的操作方法: 写出解答过程: 问:树形图与表格法相比较各有什么特点? 小结:教科书第153页左边的结论。 思考:教科书第153页的思考题。 二、练习,巩固技能教科书第154页练习。 练习1是每次试验涉及2个因素的问题,共有36种可能的结果; 练习2是每次试验涉及3个因素的问题,共有27种可能的结果。 尽管这2个问题可能的结果都比较多,但用树形图的方法并不难求得, 重要的是要让学生正确把握题意,鉴别每次试验涉及的因素以及这些因素的顺序。 二、 单元小结问题:(要求学生思考和讨论) 1. 本单元学习的概率问题有什么特点? 2. 为了正确地求出所求的概率,我们要求出各种可能的结果,那么通常是用什么方法求出各种可能的结果呢? 特点:一次试验中可能出现的结果是有限多个,各种结果发生的可能性是相等的。 通常可用列表法和树形图法求得各种可能结果。 三、 提高练习教科书第155页习题25.2第9题。 这是一道正确理解概率意义的问题, 四、布置作业: 课本第155页第5、6题 垦利县数学学科师生共用讲学稿 年级:九年级 内容: 25.3用频率估计概率(第1课时)课型:新授 执笔: 贺焕杰 审核:陈宏丽 定稿:张德军 使用时间: 学习目标: 1理解实验次数较大时实验频率趋与稳定这一规律。 2结合具体情景掌握如何用频率估计概率。 3通过概率计算进一步比较概率与频率之间的关系。 学习重点:用频率估计概率的意义。 学习难点:用频率估计概率。 学法指导:用频率估计概率的正确性、近似性和必要性。所谓正确性,是在相同的条件下,大量重复的实验下,频率可以认为是事件的概率,运用这个概率去估计事件发生的可能是正确的。所谓近似性,是因为这个概率毕竟是通过实验统计出来的,不同的人实验的结果可能不一样,不同的实验次数实验的结果可能不一样。所谓必要性,是因为随机使件必须用频率估计概率。 教学过程: 一、高效预习,成果展示 1、估算幼苗的移植成活率,运输中柑橘完好的概率,种子的发芽率等事例中,都利用了( ) 的方法来计算。 2、在种子发芽率的实验中,科研人员经过大量实验得到不同数量的种子,发芽的频率都约是0.78,则可以估计种子发芽率是 ( ) ,从而可估计200千克的种子约有 ( ) 千克种子发芽。 3、假设某树林中10×10的面积上有9棵红枫树,整个树林面积市是2300 ,请你估计整个树林中总共有多少棵红枫树?得到红球的概率为,得到黑球的概率为,是求这20个球 中黄球共有多少个? 4、在一个盒子中有红球、黑球和黄球共20个,每个球除颜色外都相同,从中任意摸一球,得到红球的概率为,得到黑球的概率为,试求这20个球中黄球共有多少个? 二、自主学习 问题 :某商场设立了一个可以自由转动的转盘,并归定顾客购物10元以上就能祸得一次转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品。下表是活动进行中的一组统计数据:(图中灰色区域为可乐) 转动转盘的次数n 100 150 200 500 800 1000 落在铅笔的次数m 68 111 136 345 564 701 落在“铅笔”的频率m/n (1)计算并完成表格。 (2)请估计当n很大时,频率将会接近多少? (3)假如你转动该转盘一次,你获得该铅笔的概率约是多少? (4)在该转盘中,标有铅笔的区域的扇形的圆心角是多少(精确到1度)? 三、合作探究 思考:在做从复实验时,随着实验次数的增多年,事件发生的概率有什么变化趋势? 2、 利用频率估计概率的前提条件是什么? 3、 通过上面问题的解答,你认为频率概率之间有什么关系? 四、应用再现 某水果公司以2元/千克的成本新进了10000千克柑橘,销售人员首先从所有柑橘中随机地抽取若柑橘,进行了“柑橘损坏率”的统计,并把获得数据记录在表中 (1)请你帮忙完成此表 柑橘总质量n千克 50 100 150 200 250 300 350 400 450 500 损坏柑橘质量 M千克 5.50 10.50 15.15 19.42 24.25 30.93 35.32 39.24 44.57 51.54 柑橘损坏的频率m/n 0.11 0.105 (2)通过以上计算可得到柑橘的损坏率为( ),则柑橘的完好率为( )。 (3)公司在出售这批柑橘年(以去掉损坏的柑橘)时,每千克的成本为多少? (4)如果公司希望这些柑橘能获利5000元,则每千克大约定价为多少元比较合适? 思考:上题能否直接把表中500千克柑橘对应的柑橘损坏率看作柑橘损坏的概率? 五、自我检恻 1填空 (1)某校招收实验班的学生,从每5个报名的学生中录取3人,如果有100名报名,则有( )人可能被录取。 (2)一箱灯泡有24个,灯泡的合格率是0.98,则小亮从中任意拿出一只灯炮是次品的概率是( ) (3)某城市有400万人,随机调查了2000人,其中有450人看该城市的“家庭”节目,若在该城市随便问一个人,他看该节目的概率大约是( ) (4)一个数字转盘,上面从1到15共有15个数字,当某人无数次转动转盘时,中间 的指针指向数字7的概率是( )。 2拓展提高 王叔叔承包了鱼塘养鱼,到了收获时期,他想知道池塘里大约有多少条鱼,于是他先捞出1000条鱼,将他们做上标记,然后放回鱼塘,经过一段时间后,待有标记的鱼完全混合于鱼群后,从中捕捞出150条鱼,发现有标记的鱼有3条,则: (1) 池塘内约有多少条鱼? (2) 如果每条鱼重0.5千克,每千克鱼的利润为1元,那么估计它所获得的利润为多少元? 垦利县数学学科师生共用讲学稿 年级:九年级 内容:25.3利用频率估计概率(第2课时) 课型:新授 执笔: 陈宏丽 审核:贺焕杰 定稿:张德军 使用时间: 学习目标 1、在掌握用频率估计概率的基础上,了解模拟实验估计概率的合理性与必要性。 2、掌握通过模拟实验估计概率的方法。 3、培养学生使用现代信息技术,针对一个现实问题,提出一个切实可行进行模拟实验的策略的能力。 学习重点:用频率估计概率。 学习难点:利用现代信息技术,通过模拟实验去估计概率。 学法指导 通过学生间集体合作,小组讨论的形式,体会在解决某些实际问题时,有时考查实际的对象不方便时,可用模拟实验来估计概率。 学习过程: 一、学习准备 1、看谁做的快 (1) 抛掷两枚普通的骰子,“出现数字之积为奇数”与“出现数字之积为偶数”这两个概率之和是( ) (2) 从一幅扑克牌中抽取一张,抽到红色“J”的概率是( ) (3) 下列说法正确的是( ) A通过多次试验得到的某事件发生的频率等于这一事件的概率。 B某人前九次掷出的硬币都是反面朝上,那么第10次掷出的硬币正面朝上的概率一定大于反面朝上的概率。 C不确定事件的概率可能等1。 D实验估计结果与理论概率不一致。 2、概率频率的联系是什么? 3、自学课本第160页,问题3,把疑难问题记录下来。 你是怎么求它的概率的?课本设计的方案的思路是什么?与前面求概率的 方法有什么区别与联系?小组间讨论给出你们的结论。 二、探究归纳 1、模拟实验的意义? 2、你能设计一个简单的用模拟实验估计概率的问题吗? 3、随机数的意义?怎样用计算机得随机数?小组间讨论实验。 三、应用提高 例1:某风景区对5个旅游景点游客人数进行了统计,有关数据如下表: (1) 如果这个星期天你去风景区,小明、小刚也去了,你在哪个风景区遇见他俩的机会大?为什么? (2) 如果到了这个风景区,你不想把这几个景点都看完,但不知道看哪一个,于是你想出了一个主意:“抓”,那么你抓出哪种票价的机会大?有多大? 景点 A B C D E 票价 10 10 15 20 25 日平均数(千人) 1 1 2 3 2 例2质检员准备从一匹产品中抽取10件产品进行检查,如果是随机抽取,为了保证每件产品被抽取的机会均等。 (1) 请采取计算器模拟实验的方法,帮质检员抽取被检产品; (2) 如果没有计算器,你能用什么方法抽取被检产品? 四、课堂小结 这堂课- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级 数学 25 概率 初步 讲学 稿人教版
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文