九年级数学上册 24.3相似三角形教案 华东师大版.doc
《九年级数学上册 24.3相似三角形教案 华东师大版.doc》由会员分享,可在线阅读,更多相关《九年级数学上册 24.3相似三角形教案 华东师大版.doc(13页珍藏版)》请在咨信网上搜索。
24.3 相似三角形 24.3.1.相似三角形 教学目标: 1.知道相似三角形的概念;会根据概念判断两个三角形相似。 2.能说出相似三角形的相似比,由相似比求出未知的边长。 教学过程: 一、复习 什么是相似形?识别两个多边形是否相似的标准是什么? 二、新课 1.相似三角形的有关概念: 由复习中引入,如果两个多边形的对应边成比例,对应角都相等,那么这两个多边形相似。 三角形是最简单的多边形。由此可以说什么样的两个三角形相似? 如果两个三角形的三条边都成比例,三个角对应相等,那么这两个三角形相似,如在△ABC与△A′B′C′中,∠A=A′,∠B=∠B′,∠C=∠C′== 那么△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′;“∽”是表示相似的符号,读作“相似于”,这样两三角形相似就读作:“△ABC相似于△A′B′C′”。 由于∠A=∠A′,∠B=∠B′,∠C=∠C′,所以点A的对应顶点是A′,B与B′是对应顶点,C与C′是对应顶点,书写相似时,通常把对应顶点写在对应位置上,以便比较容易找到相似三角形中的对应角、对应边.如果记===K,那么这个K就表示这两个相似三角形的相似比.相似比就是它们的对应边的比,它有顺序关系.如△ABC∽△A′B′C′,它的相似比为K,即指=K,那么△A′B′C′与△ABC的相似比应是,就不是K了,应为多少呢?同学们想一想? 2.△ABC中,D,E是AB、AC的中点,连结DE,那么△ADE与△ABC相似吗?为什么?如果相似,它们的相似比为多少? 如果点D不是AB中点,是AB上任意一点,过D作DE∥BC,交AC边于E,那么△ADE与ABC是否也会相似呢? 判断它们是否相似,由①对应角是否相等,②对应边是否成比例去考虑。能否得对应角相等?根据平行线性质与一个公共角可以推出①,而对应边是否成比例呢?目前还没有什么依据,同学们不妨用刻度尺量一量,算一算是否成比例?通过度量,计算发现==. 所以可以判断出△ADE与△ABC会相似。 若是如图DE∥BC,与BA、CA延长线交于D、E,那么△ADE与△ABC还会相似吗?试一试看。如果相似写出它们对应边的比例式. 3.如果△ABC∽△A′B′C′,相似比K=1,你会发现什么呢? ===1,所以可得AB=A′B′,BC=B′C′,AC=A′C′,因此这两个三角形不仅形状相同,且大小也相同,这样的三角形称之为全等三角形,全等三角形是相似三角形的特例,试问: 全等的两个三角形一定相似吗? 相似的两个三角形会全等吗? 全等的符号与相似的符号之间有什么关系与区别? 4.例:如果一个三角形的三边长分别是5、12、13,与其相似的三角形的最长.边是39,那么较大三角形的周长是多少?较小三角形与较大三角形的周长的比是多少? 分析:这两个三角形会相似,对应边是哪些边?相似比是多少?哪一个三角形较大?要计算出它的周长还需求什么?根据什么来求? 三、练习 判断下列两个三角形是否相似?简单说明理由,如果相似,写出对应边的比例 四、小结 1.填空。 _______的三角形叫做相似三角形。 2.两个相似三角形的相似比为1,这两个三角形有什么关系? 3、如果一条直线平行于三角形一边,与其它两边或其延长线相交截得的三角形与原三角形相似吗?指出它们的对应边。 五、作业 24.3.2.相似三角形的判定(1) 教学目标: 1.会说出识别两个三角形相似的方法,有两个角分别相等的两个三角形相似。 2.会用这种方法判断两个三角形是否相似。 教学过程: 一、复习 1.两个矩形一定会相似吗?为什么? 2.如何判断两个三角形是否相似? 根据定义:对应角相等,对应边成比例。 3.如图△ABC与△′B′C′会相似吗?为什么?是否存在识别两个三角形相似的简便方法?本节就是探索这方面的识别两个三角形相似的方法。 二、新课讲解 同学们观察你与你的同伴所用的三角尺,以及老师用的三角板,如有一个角是30°的直角三角尺,它们的大小不一样。这些三角形是相似的,我们就从平常所用的三角尺入手探索。 (1)是45°角的三角尺,是等腰直角三角形会相似。 (2)是30°的三角尺,那么另一个锐角为60°,有一个直角,因此它们的三个角都相等,同学们量一量它们的对应边,是否成比例呢? 这样,从直观上看,一个三角形的三个角分别与另一个三角形三个角对应相等,它们好像就会“相似”。是这样吗?请同学们动手试一试: 1.画两个三角形,使它们的三个角分别相等。 画△ABC与△DEF,使∠A=∠D、∠B=∠E,∠C=∠F,在实际画图过程中,同学们画几个角相等?为什么? 实际画图中,只画∠A=∠D,∠B=∠E,则第三个角∠C与∠F一定会相等,这是根据三角形内角和为180°所确定的。 2.用刻度尺量一量各边长,它们的对应边是否会成比例?与同伴交流,是否有相同结果。 3.发现什么现象:发现如果一个三角形的三个角与另一个三角形的三个角对应相等,那么这两个三角形相似。 4.两个矩形的四个角也都分别相等,它们为什么不会相似呢? 这是由于三角形具有它特殊的性质。三角形有稳定性,而四边形有不稳定性。 于是我们得到识别两个三角形相似的一个较为简便的方法: 如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似,简单地说:两角对应相等,两三角形相似。 同学们思考,能否再简便一些,仅有一对角对应相等的两个三角形,是否一定会相似呢? 例题: 1.如图两个直角三角形△ABC和△A′B′C′中,∠C=∠C′=90°,∠A=∠A′,判断这两个三角形是否相似。 2.在△ABC与△A′B′C′中,∠A=∠A′=50°,∠B=70°,∠B′=60°,这两个三角形相似吗? 3.如图,△ABC中,DE∥BC,EF∥AB,试说明△ADE∽△EFC。 三、练习 1.△ABC中,∠ACB=90°,CD⊥AB于D,找出图中所有的相似三角形。 2.△ABC中,D是AB的边上一点,过点D作一直线与AC相交于E,要使△ADE与△ABC会相似,你怎样画这条直线,并说明理由。和你的同伴交流作法是否一样? 四、小结 本节课我们学习了识别两个三角形相似的简便方法:有两个角对应相等的两个三角形相似。 五、作业 P64 1 24.3.2.相似三角形的判定(1) 教学目标 1.会说出识别两个三角形相似的方法:有两边对应成比例,且夹角相等的两个三角形相似;三条边对应成比例的两个三角形相似。 2.能依据条件,灵活运用三种识别方法,正确判断两个三角形相似。 教学过程 一、复习 1.现在要判断两个三角形相似有哪几种方法? 有两种方法,(1)是根据定义;(2)是有两个角对应相等的两个三角形相似。 2.如图△ABC中,D、E是AB、AC上三等分点(即AD=AB,AE=AC),那么△ADE与△ABC相似吗?你用的是哪一种方法? 由于没有两个角对应相等,同学们可以动手量一量,量什么东西后可以判断它们能否相似?(可能有一部分同学用量角器量角,有一部分同学量线段,看看能否成比例)无论哪一种,都应肯定他们,是正确的,要求同学说出是应用哪一种方法判断出的。 二、新课讲解 同学们通过量角或量线段计算之后,得出:△ADE∽△ABC。从已知条件看,△ADE与△ABC有一对应角相等,即∠A=∠A(是公共角),而一个条件是AD=AB,AE=AC,即是=,=;因此=。△ADE的两条边 AD、AE与△ABC的两条边AB、AC会对应成比例,它们的夹角又相等,符合这样条件的两个三角形也会相似吗?我们再做一次实验。观察图,如果有一点E在边AC上,那么点E应该在什么位置才能使△ADE与△ABC相似呢? 图中两个三角形的一组对应边AD与AB的长度的比值为,将点E由点A开始在AC上移动,可以发现当AE=AC时,△ADE与△ABC相似。此时= 同学们画两个三角形,△ABC与△A′B′C′,使之∠A=∠A′,AB=2A′B′,AC=2A′C′,量一量BC与B′C′的长,计算BC:B′C′与同伴交流,是否与,相等?再量一量∠B与∠B′、∠C与∠C′,它们是否对应相等呢?这样的两个三角形相似吗? 于是有识别两个三角形相似的第二种简便方法: 如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。简单地说;两边对应成比例且夹角相等,两三角形相似。 强调对应相等的角必须是成比例的边的夹角,如果不是夹角,它们不一定会相似。你能画出有两边会对应成比例,有一个角相等,但它们不相似的两个三角形吗?(画顶角与底角相等的两个等腰三角形)∠B=∠B′,= 例题: 1.(课本中例3)判断图中△AEB与△FEC是否相似? 2.如图△ABC中,D、E是AB、AC上点,AB=7.8,AD=3,AC=6,CE=2.1,试判断△ADE与△ABC是否会相似,小张同学的判断理由是这样的: 解:因为AC=AE+CE,而AC=6,CE=2.1, 故 AE=6-2.1=3.9 由于≠ 所以△ADE与△ABC不会相似。 你同意小张同学的判断吗?请你说说理由。 小张同学的判断是错误的。 因为=,== 所以= 而 ∠A是公共角,∠A=∠A, 所以△ADE∽△ACB. 请同学再做一次实验,看看如果两个三角形的三条边都成比例,那么这两个三角形是否相似? 看课本58页“做一做”。 通过实验得出:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简单说成:三边成比例两三角形相似。 例:△ABC和△A′B′C′中,AB=6cm,BC=8cm,AC=l0cm,A′B′=18cm,B′C′=24cm,A′C′=30cm,试判定它们是否相似,并说明理由。 三、练习 课本59页 练习1、2,3. 四、小结 到现在我们学习了识别两个三角形是否相似的三种较简便的方法,请同学回忆说出. 五、作业 :P64 4 24.3.3 相似三角形的性质 教学目标 会说出相似三角形的性质:对应角相等,对应边成比例,对应中线、角平分线、高的比等于相似比,周长比等于相似比,面积比等于相似比的平方。 教学过程 一、复习 1.识别两个三角形相似的简便方法有哪些? 2.在△ABC与△A′B′C′中,AB=l0cm,AC=6cm,BC=8cm,A′B′=5cm,A′C′=3cm,B′C′=4cm,这两个三角形相似吗?说明理由。 如果相似,它们的相似比是多少? 二、新课讲解 上述两个三角形是相似的,它们对应边的比就是相似比,△ABC∽△A′B′C′,相似比为=2 。 相似的两个三角形,它们的对应角相等,对应边会成比例,除此之外,还会得出什么结果呢? 一个三角形内有三条主要线段;高、中线、角平分线。如果两个三角形相似,那么这些对应的线段有什么关系呢?我们先探索一下它们的对应高之间的关系。 同学画出上述的两个三角形,作对应边AB和A′B′边上的高,用刻度尺量一量CD与C′D′的长,等于多少呢?与它们的相似比相等吗?得出结论: 相似三角形对应高的比等于相似比。我们能否用说理的方法来说明这个结论呢?同学们用上面类似方法,得出:相似三角形对应中线的比等于相似比;相似三角形对应角平分线的比等于相似比。 两个相似三角形的周长比会等于相似比吗? 两个相似三角形的面积之间有什么关系呢? 看如图的三个三角形,三角形(2)的各边长分别是(1)的2倍,(3)的各边长分别是(1)的3倍,所以它们都是相似的,填空: (2)与(1)的相似比为( ),(2)与(1)的面积比为( ), (3)与(1)的相似比为( ),(3)与(1)的面积比为( ) (3)与(2)的相似比为( ),(3)与(2)的面积比为( )。 以上可以看出当相似比为K时,面积比为K2。对于一般相似的三角形都具有这种关系,可以得出结论:相似三角形的面积比等于相似比的平方。 三、练习 1.△ABC∽△A′B′C′,相似比为3:2,则对应中线的比等于( )。 2.相似三角形对应角平分线比为0.2,则相似比为( ),周长比为( ),面积比为( ) 3.△ABC∽△A′B′c′,相似比为,已知△A′B′C′的面积为18cm2,那么 △ABC的面积为( )。 四、小结 (填空形式,同学回答)相似三角形( )相等,( )的比等于相似比,面积的比等于( )。 五、作业 24.3.4 相似三角形的应用 教学目标 会应用相似三角形的有关性质,测量简单的物体的高度或宽度。 教学过程 一、复习 1、相似三角形有哪些性质? 2.如图,B、C、E、F是在同一直线上,AB⊥BF,DE⊥BF,AC∥DF, (1) △DEF与△ABC相似吗?为什么? (2)若DE=1,EF=2,BC=10,那么AB等于多少? 二、例题讲解 第二题我们根据两个三角形相似,对应边成比例,列出比例式计算出AB的长。人们从很早开始,就懂得应用这种方法来计算那些不能直接测量的物体的高度或宽度。 例1:古代的数学家想出了一种测量金字塔高度的方法:为了测量金字塔的高度OB,先竖一根已知长度的木棒O′B′,比较棒子的影长A′B′与金字塔的影长AB,即可近似算出金字塔的高度OB,如果O′B′=l,A′B′=2,AB=274,求金字塔的高度OB。 这实际上与上述问题是一样的。 例2.我军一小分队到达某河岸,为了测量河宽,只用简单的工具,就可以很快计算河的宽度,在河对岸选定一个目标作为点A,再在河的这一岸上选点B和C,使AB⊥BC,然后选点E,使EC⊥BC,用眼睛测视确定BC和AE的交点D,此时如果测得BD=120米,DC=60米,EC=50米,就能算出两岸间的大致距离AB。 例2:如图24.3.13,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选定点B和C,使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和AE的交点D.此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB. 解 ∵ ∠ADB=∠EDC, ∠ABC=∠ECD=90°, ∴ △ABD∽△ECD (如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似), ∴ , 解得 (米). 答: 两岸间的大致距离为100米. 这些例题向我们提供了一些利用相似三角形进行测量的方法. 例3:如图24.3.14,已知: D、E是△ABC的边AB、AC上的点,且∠ADE=∠C.求证: AD·AB=AE·AC. 证明 ∵ ∠ADE=∠C,∠A=∠A, ∴ △ADE∽△ACB(如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似). ∴ , ∴ AD·AB=AE·AC. 三、练习 1.到操场上用例1的方法测量旗杆的高,并与同伙交流看看计算结果是否大致上一样。 2.在同一时刻物体的高度与它的影长成正比,在某一时刻,有人测得高为1.8米的竹竿的影长为3米,此时某高楼影长为60米,那么高楼的高度为多少米? 四、小结 本节课学习应用相似三角形的性质,测量计算物体的高度,在应用时要分清转到数学上是哪两个三角形会相似,它们对应的边是哪一边,利用比例的性质求证答案。 五、作业- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级数学上册 24.3相似三角形教案 华东师大版 九年级 数学 上册 24.3 相似 三角形 教案 华东师大
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文