秋九年级数学上册 23.2 中心对称教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc
《秋九年级数学上册 23.2 中心对称教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc》由会员分享,可在线阅读,更多相关《秋九年级数学上册 23.2 中心对称教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc(7页珍藏版)》请在咨信网上搜索。
23.2 中心对称 23.2.1 中心对称 1.正确认识什么是中心对称、对称中心,理解关于中心对称图形的性质特点. 2.能根据中心对称的性质,作出一个图形关于某点成中心对称的对称图形. 重点 中心对称的概念及性质. 难点 中心对称性质的推导及理解. 复习引入 问题:作出下图的两个图形绕点O旋转180°后的图案,并回答下列的问题: 1.以O为旋转中心,旋转180°后两个图形是否重合? 2.各对应点绕O旋转180°后,这三点是否在一条直线上? 老师点评:可以发现,如图所示的两个图案绕O旋转180°后都是重合的,即甲图与乙图重合,△OAB与△COD重合. 像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心. 这两个图形中的对应点叫做关于中心的对称点. 探索新知 (老师)在黑板上画一个三角形ABC,分两种情况作两个图形: (1)作△ABC一顶点为对称中心的对称图形; (2)作关于一定点O为对称中心的对称图形. 第一步,画出△ABC. 第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′C和△A′B′C′,如图(1)和图(2)所示. 从图(1)中可以得出△ABC与△A′B′C是全等三角形; 分别连接对称点AA′,BB′,CC′,点O在这些线段上且O平分这些线段. 下面,我们就以图(2)为例来证明这两个结论. 证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△AOB≌△A′OB′,∴AB=A′B′,同理可证:AC=A′C′,BC=B′C′,∴△ABC≌△A′B′C′; (2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点. 同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点. 因此,我们就得到 1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分. 2.关于中心对称的两个图形是全等图形. 例题精讲 例1 如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称. 分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO,BO,CO并延长,取与它们相等的线段即可得到. 解:(1)连接AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示. (2)同样画出点B和点C的对称点E和F. (3)顺次连接DE,EF,FD,则△DEF即为所求的三角形. 例2 (学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法). 课堂小结(学生总结,老师点评) 本节课应掌握: 中心对称的两条基本性质: 1.关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分; 2.关于中心对称的两个图形是全等图形及其它们的应用. 作业布置 教材第66页 练习 23.2.2 中心对称图形 了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用. 复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其他的运用. 重点 中心对称图形的有关概念及其它们的运用. 难点 区别关于中心对称的两个图形和中心对称图形. 一、复习引入 1.(老师口问)口答:关于中心对称的两个图形具有什么性质? (老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分. 关于中心对称的两个图形是全等图形. 2.(学生活动)作图题. (1)作出线段AO关于O点的对称图形,如图所示. (2)作出三角形AOB关于O点的对称图形,如图所示. 延长AO使OC=AO,延长BO使OD=BO,连接CD,则△COD即为所求,如图所示. 二、探索新知 从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=OB,所以,就是线段AB绕它的中点旋转180°后与它本身重合. 上面的(2)题,连接AD,BC,则刚才的关于中心O对称的两个图形就成了平行四边形,如图所示. ∵AO=OC,BO=OD,∠AOB=∠COD ∴△AOB≌△COD ∴AB=CD 也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合. 因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心. (学生活动)例1 从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形. 老师点评:老师边提问学生边解答的特点. (学生活动)例2 请说出中心对称图形具有什么特点? 老师点评:中心对称图形具有匀称美观、平稳的特点. 例3 求证:如图,任何具有对称中心的四边形是平行四边形. 分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分. 证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC,BD必过点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,四边形ABCD是平行四边形. 三、课堂小结(学生归纳,老师点评) 本节课应掌握: 1.中心对称图形的有关概念; 2.应用中心对称图形解决有关问题. 四、作业布置 教材第70页 习题8,9,10. 23.2.3 关于原点对称的点的坐标 理解点P与点P′关于原点对称时它们的横纵坐标的关系,掌握P(x,y)关于原点的对称点为P′(-x,-y)的运用. 复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用. 重点 两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点P′(-x,-y)及其运用. 难点 运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题. 一、复习引入 (学生活动)请同学们完成下面三题. 1.已知点A和直线l,如图,请画出点A关于l对称的点A′. 2.如图,△ABC是正三角形,以点A为中心,把△ABC顺时针旋转60°,画出旋转后的图形. 3.如图△ABO,绕点O旋转180°,画出旋转后的图形. 老师点评:老师通过巡查,根据学生解答情况进行点评.(略) 二、探索新知 (学生活动)如图,在直角坐标系中,已知A(-3,1),B(-4,0),C(0,3),D(2,2),E(3,-3),F(-2,-2),作出A,B,C,D,E,F点关于原点O的中心对称点,并写出它们的坐标,并回答: 这些坐标与已知点的坐标有什么关系? 老师点评:画法:(1)连接AO并延长AO; (2)在射线AO上截取OA′=OA; (3)过A作AD′⊥x轴于点D′,过A′作A′D″⊥x轴于点D″. ∵△AD′O与△A′D″O全等, ∴AD′=A′D″,OA=OA′, ∴A′(3,-1), 同理可得B,C,D,E,F这些点关于原点的中心对称点的坐标. (学生活动)分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点? 提问几个同学口述上面的问题. 老师点评:(1)从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.(2)坐标符号相反,即P(x,y)关于原点O的对称点P′(-x,-y). 两个点关于原点对称时,它们的坐标符号相反, 即点P(x,y)关于原点O的对称点为P′(-x,-y). 例1 如图,利用关于原点对称的点的坐标的特点,作出与线段AB关于原点对称的图形. 分析:要作出线段AB关于原点的对称线段,只要作出点A、点B关于原点的对称点A′,B′即可. 解:点P(x,y)关于原点的对称点为P′(-x,-y),因此,线段AB的两个端点A(0,1),B(3,0)关于原点的对称点分别为A′(0,-1),B(-3,0). 连接A′B′. 则就可得到与线段AB关于原点对称的线段A′B′. (学生活动)例2 已知△ABC,A(1,2),B(-1,3),C(-2,4),利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形. 老师点评分析:先在直角坐标系中画出A,B,C三点并连接组成△ABC,要作出△ABC关于原点O的对称三角形,只需作出△ABC中的A,B,C三点关于原点的对称点,依次连接,便可得到所求作的△A′B′C′. 三、巩固练习 教材第69页 练习. 四、课堂小结 点P(x,y)关于原点的对称点为P′(-x,-y). 五、作业布置 教材第70页 习题3,4.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 秋九年级数学上册 23.2 中心对称教案 新版新人教版-新版新人教版初中九年级上册数学教案 九年级 数学 上册 中心对称 教案 新版 新人 初中 数学教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:秋九年级数学上册 23.2 中心对称教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc
链接地址:https://www.zixin.com.cn/doc/7633513.html
链接地址:https://www.zixin.com.cn/doc/7633513.html