七年级数学绝对值教案(1)北师大版.doc
《七年级数学绝对值教案(1)北师大版.doc》由会员分享,可在线阅读,更多相关《七年级数学绝对值教案(1)北师大版.doc(8页珍藏版)》请在咨信网上搜索。
绝对值(1) 教学目标 (一)教学知识点 1.绝对值的概念. 2.利用绝对值比较两个负有理数的大小. (二)能力训练要求 1.借助数轴,初步理解绝对值的概念,能求一个数的绝对值. 2.会利用绝对值比较两个负数的大小. 3.通过应用绝对值解决实际问题,体会绝对值的意义和作用. (三)情感与价值观要求 通过师生的交流、探求,使学生进一步了解数轴.由上节课知道:任何一个有理数都可以用数轴上的点表示.因此,解决数的问题时,要注意借助数轴思考.有意识地形成“脑中有图,心中有数.”把数和形结合起来,使我们能够生动、直观、简洁地阐明事物的本质. 教学重点 绝对值的概念及运用绝对值比较数的大小. 教学难点 绝对值的概念. 教学方法 启发引导法. 整节课的教学活动注意最大限度地发挥学生的主体参与.让学生在教师的引导启发下,轻松愉快地学到新知识. 教具准备 投影片五张 第一张:练习(记作§2.3 A) 第二张:引例(记作§2.3 B) 第三张:本节例题(记作§2.3 C) 第四张:做一做(记作§2.3 D) 第五张:试一试(记作§2.3 E) 教学过程 Ⅰ.通过练习引导,引入新课 [师]上节课,咱们一起探讨了数轴,谁能说一说什么是数轴? [生甲]有一条水平直线,在这条直线上取一点为原点,选取某一长度为单位长度.规定直线向右的方向为正方向,这样的一条直线为数轴. [生乙]数轴是规定了原点、正方向、单位长度的直线.原点、正方向、单位长度是它的三要素. [师]这两位同学回答得都正确.前一位同学描述了数轴的特征,后一位同学把特征用一句话概括出来了,并点明了数轴的三要素.很好.现在我们学的数为有理数,有了数轴后,就可以把所有的有理数用数轴上的点表示.这样,我们在研究数时,就可以借助数轴来思考.下面我们来做练习巩固一下上节课的内容(出示投影片§2.3 A) 画出数轴,并用数轴上的点表示下列各数: -1.5,0,-6,2,+6,-3,3 解: [师]大家做得都很好.画数轴时,都注意了三要素.看自己画的数轴.想:在数轴上表示-1.5的点到原点的距离是多少?表示+6的点到原点的距离是多少?表示0的点呢? [生]-1.5到原点的距离是1.5个单位长度.+6到原点的距离是6个单位长度.表示0的点就是原点,所以它到原点的距离为0. [师]那其他的呢?(还是让学生看自己画的数轴,及表示数的点) [生]表示-6的F点到原点的距离是6个单位长度,表示2的B点到原点的距离是2个单位长度.表示-3的E点和表示3的C点到原点的距离都是3个单位长度. [师]回答得很好.一般来说,两个点的距离是一个数.想一想:表示两点距离的数一定是正数或者是0吗? [生]是. [师]对,表示两点距离的数一定是正数或者是0.一般地,我们把正数和零称为非负数.以后遇到“非负数”三字应想到它是正数或者是0. 在数轴上,表示-1.5的点到原点的距离是1.5,(单位长度是这里距离的单位,可以省略)这时,我们说:1.5就是-1.5的绝对值. 什么是绝对值呢?这节课我们就来探讨绝对值. Ⅱ.讲授新课 在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.(absolute value)或者说,一个数的绝对值就是数轴上表示数的点与原点的距离.如(出示投影片§2.3 B) 图中小兔所在的地方可以用数+2表示.它距原点有2个单位长度.即小兔与原点的距离是2,那我们就说:2就是+2的绝对值. 记作:|+2|=2 图中两只小狗分别距原点多远呢? [生甲]两只小狗距原点都是3个单位长度.一只小狗在原点左边,可用-3表示它所在的位置,另一只小狗在原点右边,可用+3表示它所在的位置. [生乙]那3就是+3与-3的绝对值. [师]好.可记作|+3|=3,|-3|=3,现在我们回头看一看刚才的练习题(出示投影片 §2.3 A).当时是让大家画数轴,再把数用数轴上的点表示.现在我们把题变为求下列各数的绝对值.能否口答? [生齐声]能. [生甲]-1.5的绝对值是1.5;0的绝对值是0;-6的绝对值是6;2的绝对值是2,6的绝对值是6;-3的绝对值是3,+3的绝对值是3. [生乙]老师,-6的绝对值是6,6的绝对值是6,而-6和6是互为相反数,同样,3也是互为相反数-3和+3的绝对值.所以就可以说:互为相反数的绝对值相等.行吗? [生丙]肯定行.上节课我们知道:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且到原点的距离相等,所以就可以说:互为相反数的两个数的绝对值相等. [师]同学们回答正确,从结果中能总结一些规律,这种探求精神需继续发扬.现在大家分组讨论一下:除刚才总结出的:“互为相反数的两个数的绝对值相等”外,还有没有其他的特征? [生甲]正数的绝对值是正数,负数的绝对值是正数. [生乙]错了.应该说:正数的绝对值是它本身,负数的绝对值是它的相反数. [生丙]还应该有:零的绝对值是零. [师]一个数可以是正数,可以是负数,也可以是零.由绝对值的意义,可以知道:正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零. 学习了绝对值的概念后,我们可以知道:一个有理数,是由符号与绝对值两方面来确定的.如:+3是由符号“+”与绝对值3组成的;-的符号是“-”,绝对值是“”. 下面做一个练习巩固一下绝对值的概念.(出示投影片§2.3 C) 求下列各数的绝对值: -21,+,0,-7.8 解:|-21|=21,|+|= |0|=0,|-7.8|=7.8 下面我们再做一做(出示投影片§2.3 D) (1)在数轴上表示下列各数,并比较它们的大小: -1.5,-3,-1,-5; (2)求出(1)中各数的绝对值,并比较它们的大小; (3)你发现了什么? (学生动手画、表示、比较后,讨论(3)) 解: -5<-3<-1.5<-1 (2)|-1.5|=1.5;|-3|=3; |-1|=1;|-5|=5 1<1.5<3<5 (3)由以上知;两个负数比较大小,绝对值大的反而小. [师]你的发现正确吗?请举例说明. [生甲]如:-8与-;-8与-利用数轴比较时为:-8<-而|-8|>|-|,所以说:两个负数比较大小时,绝对值大的反而小. [生乙]如:-3与-5,-5的绝对值较大,而在数轴上表示的这两个数是-5在-3的左边,因此-5小于-3. [师]同学们举的例子很好.至此我们又得到了比较两个负数大小的另一种方法:利用绝对值.也就是说:如果要比较两个负数的大小时,先比较这两个负数的绝对值.然后通过绝对值的大小而确定这两个负数的大小. 下面我们共同看一例题(出示投影片§2.3 C) [例2]比较下列每组数的大小. (1)-1和-5; (2)-和-2.7 分析:这个题是比较两个负数的大小,比较方法可以多样化,既可以利用绝对值比较,也可以利用数轴来比较. 解:(1)因为|-1|=1,|-5|=5,1<5,所以-1>-5. (2)因为|-|=,|-2.7|=2.7, <2.7,所以->-2.7. (还可以利用数轴比较: (1) 因为-5在-1左边,所以-5<-1 (2) 因为-2.7在-的左边,所以-2.7<-) [师]两个负数比较大小的方法,其根据是表示这两个数的点在数轴上的位置关系.但一旦得出利用绝对值比较负数大小的方法,今后就可以不必通过数轴,直接利用绝对值来比较就可以了. Ⅲ.课堂练习 课本P42随堂练习 1.在数轴上表示下列各数,并求出它们的绝对值: -,6,-3, 解: 绝对值依次为:,6,3,. 2.比较下列各组数的大小: (1)-,-;(2)-0.5,- (3)0,|-|;(4)|-7|,|7| 解:(1)->- (2)-0.5>-; (3)0<|-| (4)|-7|=|7| [师]练习题大家做得不错.下面我们来试着做一做下列各题(出示投影片§2.3 E) 1.字母a表示一个数,-a表示什么?-a一定是负数吗? 2.如果|a|=4,那么a等于多少? 3.(1)如果数a的绝对值等于a,那么a可能是正数吗?可能是零吗?可能是负数吗? (2)如果数a的绝对值大于a,那么a可能是正数吗?可能是零吗?可能是负数吗? (3)一个数的绝对值可能小于它本身吗? 解:1.-a表示a的相反数,-a未必是负数. 2.a为4或-4 3.(1)a可能是正数,可能是零,不可能是负数. (2)a不可能是正数,不可能是零,a一定是负数. (3)不可能. Ⅳ.课时小结 1.通过本节学习,要初步理解绝对值的概念.即:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值;(这是几何定义)正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零.(这是代数定义) 2.学习绝对值以后,还可以利用绝对值来比较两个负数的大小.即:两个负数比较大小,绝对值大的反而小. Ⅴ.课后作业 (一)看课本P41~42 (二)课本P42习题2.3 (三)复习总结§2.1~§2.3所学内容. Ⅵ.活动与探究 已知|x-2|+|y-|=0,求2x+3y的值. 过程:通过探讨,交流,进一步理解绝对值的含义.任何一个数的绝对值是一个非负数,两个非负数相加为零,只有这两个数都为零,即可求出x、y的值.然后代入式子求值. 结果:由题意得:|x-2|=0和|y-|=0,所以:x-2=0,x=2,y-=0,y=,所以:2x+3y=2×2+3×=4+1=5. ●板书设计 §2.3 绝对值 一、绝对值的概念 例1 二、两个负数比较大小 例2 三、随堂练习 四、试一试 五、课时小结 六、课后作业- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 七年 级数 绝对值 教案 北师大
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文