九年级数学下册 3.3 圆周角和圆心角的关系教案二 湘教版.doc
《九年级数学下册 3.3 圆周角和圆心角的关系教案二 湘教版.doc》由会员分享,可在线阅读,更多相关《九年级数学下册 3.3 圆周角和圆心角的关系教案二 湘教版.doc(9页珍藏版)》请在咨信网上搜索。
圆周角和圆心角的关系 教学目标 (一)教学知识点 1.掌握圆周角定理几个推论的内容. 2.会熟练运用推论解决问题. (二)能力训练要求 1.培养学生观察、分析及理解问题的能力. 2.在学生自主探索推论的过程中,经历猜想、推理、验证等环节,获得正确的学习方式. (三)情感与价值观要求 培养学生的探索精神和解决问题的能力. 教学重点 圆周角定理的几个推论的应用. 教学难点 理解几个推论的“题设”和“结论”. 教学方法 指导探索法. 教具准备 投影片三张 第一张:引例(记作§3.3.2A) 第二张:例题(记作§3.3.2B) 第三张:做一做(记作§3.3.2C) 教学过程 Ⅰ.创设问题情境,引入新课 [师]请同学们回忆一下我们前几节课学习了哪些和圆有关系的角?它们之间有什么关系? [生]学习了圆心角和圆周角、一条弧所对的圆周角等于它所对的圆心角的一半.即圆周角定理. [师]我们在分析、证明上述定理证明过程中,用到了些什么数学思想方法? [生]分类讨论、化归、转化思想方法. [师]同学们请看下面这个问题:(出示投影片§3.3.2A) 已知弦AB和CD交于⊙O内一点P,如下图. 求证:PA·PB=PC·PD. [师生共析]要证PA·PB=PC·PD,可证.由此考虑证明PA、PC为边的三角形与以PD、PB为边的三角形相似.由于图中没有这两个三角形,所以考虑作辅助线AC和BD.要证△PAC∽△PDB.由已知条件可得∠APC与∠DPB相等.如能再找到一对角相等.如∠A=∠D或∠C=∠B.便可证得所求结论.如何寻找∠A=∠D或∠C=∠B.要想解决这个问题,我们需先进行下面的学习. Ⅱ.讲授新课 [师]请同学们画一个圆,以A、C为端点的弧所对的圆周角有多少个?(至少画三个)它们的大小有什么关系?你是如何得到的? [生]所对的圆周角有无数个,它们的大小相等,我是通过度量得到的. [师]大家想一想,我们能否用验证的方法得到上图中的∠ABC=∠ADC=∠AEC?(同学们互相交流、讨论) [生]由图可以看出,∠ABC、∠ADC和∠AEC是同弧()所对的圆周角,根据上节课我们所学的圆周角定理可知,它们都等于圆心角∠AOC的一半,所以这几个圆周角相等. [师]通过刚才同学的学习,我们上面提出的问题∠A=∠D或∠C=∠B找到答案了吗? [生]找到了,它们属于同弧所对的圆周角.由于它们都等于同弧所对圆心角的一半,这样可知∠A=∠D或∠C=∠B. [师]如果我们把上面的同弧改成等弧,结论一样吗? [生]一样,等弧所对的圆心角相等,而圆周角等于圆心角的一半.这样,我们便可得到等弧所对的圆周角相等. [师]通过我们刚才的探讨,我们可以得到一个推论. 在同圆或等圆中,同弧或等弧所对的圆周角相等. [师]若将上面推论中的“同弧或等弧”改为“同弦或等弦”,结论成立吗?请同学们互相议一议. [生]如下图,结论不成立.因为一条弦所对的圆周角有两种可能,在弦不是直径的情况下是不相等的. 注意:(1)“同弧”指“同一个圆”. (2)“等弧”指“在同圆或等圆中”. (3)“同弧或等弧”不能改为“同弦或等弦”. [师]接下来我们看下面的问题: 如下图,BC是⊙O的直径,它所对的圆周角是锐角、直角,还是钝角?你是如何判断的?(同学们互相交流、讨论) [生]直径BC所对的圆周角是直角,因为一条直径将圆分成了两个半圆,而半圆所对的圆心角是∠BOC=180°,所以∠BAC=∠90°. [师]反过来,在下图中,如果圆周角∠BAC=90°,那么它所对的弦BC经过圆心O吗?为什么? [生]弦BC经过圆心O,因为圆周角∠BAC=90°.连结OB、OC,所以圆心角∠BOC=180°,即BOC是一条线段,也就是BC是⊙O的一条直径. [师]通过刚才大家的交流,我们又得到了圆周角定理的又一个推论: 直径所对的圆周角是直角;90°的圆周角所对的弦是直径. 注意:这一推论应用非常广泛,一般地,如果题目的已知条件中有直径时,往往作出直径上的圆周角——直角;如果需要直角或证明垂直时,往往作出直径即可解决问题. [师]为了进一步熟悉推论,我们看下面的例题.(出示投影片§3.3.2B) [例]如图示,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么? [师生共析]由于AB是⊙O的直径,故连接AD.由推论直径所对的圆周角是直角,便可得AD⊥BC,又因为△ABC中,AC=AB,所以由等腰三角形的三线合一,可证得BD=CD. 下面哪位同学能叙述一下理由? [生]BD=CD.理由是: 连结AD. ∵AB是⊙O的直径, ∴∠ADB=90°, 即AD⊥BC. 又∵AC=AB, ∴BD=CD. [师]通过我们学习圆周角定理及推论,大家互相交流,讨论一下,我们探索上述问题时,用到了哪些方法?试举例说明. [生]在得出本节的结论过程中,我们用到了度量与证明的方法.比如说在研究同圆或等圆中,同弧或等弧所对的圆周角相等;还学到了分类与转化的方法.比如说在探索圆周角定理过程中,定理的证明应分三种情况,在这三种情况中,第一种情况是特殊情况,是证明的基础,其他两种情况都可以转化为第一种情况来解决.再比如说,学习圆周角定义时,可由前面学习到的圆心角类比得出圆周角的概念…… Ⅲ.P107 随堂练习 1.为什么有些电影院的坐位排列(横排)呈圆弧形?说一说这种设计的合理性. 答:有些电影院的坐位排列呈圆弧形,这样设计的理由是尽量保证同排的观众视角相等. 2.如下图,哪个角与∠BAC相等? 答:∠BDC=∠BAC. 3.如下图,⊙O的直径AB=10cm,C为⊙O上的一点,∠ABC=30°,求AC的长. 解:∵AB为⊙O的直径. ∴∠ACB=90°. 又∵∠ABC=30°, ∴AC=AB=×10=5(cm). 4.小明想用直角尺检查某些工件是否恰好为半圆形.根据下图,你能判断哪个是半圆形?为什么? 答:图(2)是半圆形、理由是:90°的圆周角所对的弦是直径. Ⅳ.下面我们一起来看一个问题:做一做(出示投影片§3.3.2C) 船在航行过程中,船长常常通过测定角度来确定是否会遇到暗礁.如下图,A、B表示灯塔,暗礁分布在经过A、B两点的一个圆形区域内,C表示一个危险临界点,∠ACB就是“危险角”.当船与两个灯塔的夹角大于“危险角”时,就有可能触礁;当船与两个灯塔的夹角小于“危险角”时,就能避免触礁. (1)当船与两个灯塔的夹角∠α大于“危险角”时,船位于哪个区域?为什么? (2)当船与两个灯塔的夹角∠α小于“危险角”时,船位于哪个区域?为什么? 分析:这是一个有实际背景的问题.由题意可知:“危险角”∠ACB实际上就是圆周角.船P与两个灯塔的夹角为∠α,P有可能在⊙O外,P有可能在⊙O内,当∠α>∠C时,船位于暗礁区域内;当∠α<∠C时,船位于暗礁区域外,我们可采用反证法进行论证. 解:(1)当船与两个灯塔的夹角∠α大于“危险角”∠C时,船位于暗礁区域内(即⊙O内).理由是: 连结BE,假设船在⊙O上,则有∠α=∠C,这与∠α>∠C矛盾,所以船不可能在⊙O上;假设船在⊙O外,则有∠α<∠AEB,即∠α<∠C,这与∠α>∠C矛盾,所以船不可能在⊙O外.因此,船只能位于⊙O内. (2)当船与两个灯塔的夹角∠α小于“危险角”∠C时,船位于暗礁区域外(即⊙O外).理由是: 假设船在⊙O上,则有∠α=∠C,这与∠α<∠C矛盾,所以船不可能在∠O上;假设船在⊙O内,则有∠α>∠AEB,即∠α>∠C.这与∠α<∠C矛盾,所以船不可能在⊙O内,因此,船只能位于⊙O外. 注意:用反证法证明命题的一般步骤: (1)假设命题的结论不成立; (2)从这个假设出发,经过推理论证,得出矛盾. (3)由矛盾判定假设不正确,从而肯定命题的结论正确. Ⅴ.课时小结 本节课我们学习了圆周角定理的2个推论,结合我们上节课学到的圆周角定理,我们知道,在同圆或等圆中,根据弦及其所对的圆心角、弧、弦、弦心距之间的关系,实现了圆中这些量之间相等关系的转化,而圆周角定理建立了圆心角与圆周角之间的关系,因此,最终实现了圆中的角(圆心角和圆周角).线段(弦、弦心距)、弧等量与量之间相等关系的相互转化,从而为研究圆的性质提供了有力的工具和方法. Ⅵ.课后作业 课本P108 习题3.5 Ⅶ.活动与探究 1.如下图,BC为⊙O的直径,AD⊥BC于D,P是上一动点,连结PB分别交AD、AC于点E、F. (1)当时,求证:AE=EB; (2)当点P在什么位置时,AF=EF.证明你的结论. [过程](1)连结AB,证AE=EB.需证∠ABE=∠BAE. (2)执果索因寻条件:要AF=EF,即要∠A=∠AEF,而∠AEF=∠BED,而要∠A=∠BED,只需∠B=∠C,从而转化为. [结果](1)证明:延长AD交⊙O于点M,连结AB、BM. ∵BC为⊙O的直径,AD⊥BC于D. ∴. ∴∠BAD=∠BMD. 又∵, ∴∠ABP=∠BMD. ∴∠BAD=∠ABP. ∴AE=BE. (2)当时,AF=EF. 证明:∵, ∴∠PBC=∠ACB. 而∠AEF=∠BED=90°-∠PBC, ∠EAF=90°-∠ACB, ∴∠AEF=∠EAF. ∴AF=EF. 板书设计 §3.3.2 圆周角和圆心角的关系(二) 一、推论一: 在同圆或等圆中,同弧或等弧所对的圆周角相等. 二、推论二: 直径所对的圆周角是直角;90°的圆周角所对的弦是直径. 三、例题 四、随堂练习 五、做一做(反证法) 六、课时小结 七、课后作业- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级数学下册 3.3 圆周角和圆心角的关系教案二 湘教版 九年级 数学 下册 圆周角 圆心角 关系 教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文