八年级数学下册 3.4.2分式方程(二)教案 北师大版.doc
《八年级数学下册 3.4.2分式方程(二)教案 北师大版.doc》由会员分享,可在线阅读,更多相关《八年级数学下册 3.4.2分式方程(二)教案 北师大版.doc(7页珍藏版)》请在咨信网上搜索。
第七课时 ●课 题 §3.4.2 分式方程(二) ●教学目标 (一)教学知识点 1.解分式方程的一般步骤. 2.了解解分式方程验根的必要性. (二)能力训练要求 1.通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤. 2.使学生进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径. (三)情感与价值观要求 1.培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度. 2.运用“转化”的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信. ●教学重点 1.解分式方程的一般步骤,熟练掌握分式方程的解决. 2.明确解分式方程验根的必要性. ●教学难点 明确分式方程验根的必要性. ●教学方法 探索发现法 学生在教师的引导下,探索分式方程是如何转化为整式方程,并发现解分式方程验根的必要性. ●教具准备 投影片四张 第一张:例1、例2,(记作§3.4.2 A) 第二张:议一议,(记作§3.4.2 B) 第三张:想一想,(记作§3.4.2 C) 第四张:补充练习,(记作§3.4.2 D). ●教学过程 Ⅰ.提出问题,引入新课 [师]在上节课的几个问题,我们根据题意将具体实际的情境,转化成了数学模型——分式方程.但要使问题得到真正的解决,则必须设法解出所列的分式方程. 这节课,我们就来学习分式方程的解法.我们不妨先来回忆一下我们曾学过的一元一次方程的解法,也许你会从中得到启示,寻找到解分式方程的方法. 解方程+=2- [师生共解](1)去分母,方程两边同乘以分母的最小公倍数6,得 3(3x-1)+2(5x+2)=6×2-(4x-2). (2)去括号,得9x-3+10x+4=12-4x+2, (3)移项,得9x+10x+4x=12+2+3-4, (4)合并同类项,得23x=13, (5)使x的系数化为1,两边同除以23,x=. Ⅱ.讲解新课,探索分式方程的解法 [师]刚才我们一同回忆了一元一次方程的解法步骤.下面我们来看一个分式方程.(出示投影片§3.4.2 A) [例1]解方程:=. (1) [生]解这个方程,能不能也像解含有分母的一元一次方程一样去分母呢? [师]同学们说他的想法可取吗? [生]可取. [师]同学们可以接着讨论,方程两边同乘以什么样的整式(或数),可以去掉分母呢? [生]乘以分式方程中所有分母的公分母. [生]解一元一次方程,去分母时,方程两边同乘以分母的最小公倍数,比较简单.解分式方程时,我认为方程两边同乘以分母的最简公分母,去分母也比较简单. [师]我觉得这两位同学的想法都非常好.那么这个分式方程的最简公分母是什么呢? [生]x(x-2). [师生共析]方程两边同乘以x(x-2),得x(x-2)·=x(x-2)·, 化简,得x=3(x-2). (2) 我们可以发现,采用去分母的方法把分式方程转化为整式方程,而且是我们曾学过的一元一次方程. [生]再往下解,我们就可以像解一元一次方程一样,解出x.即x=3x-6(去括号) 2x=6(移项,合并同类项). x=3(x的系数化为1). [师]x=3是方程(2)的解吗?是方程(1)的解吗?为什么?同学们可以在小组内讨论. (教师可参与到学生的讨论中,倾听学生的说法) [生]x=3是由一元一次方程x=3(x-2) (2)解出来的,x=3一定是方程(2)的解.但是不是原分式方程(1)的解,需要检验.把x=3代入方程(1)的左边==1,右边==1,左边=右边,所以x=3是方程(1)的解. [师]同学们表现得都很棒!相信同学们也能用同样的方法解出例2. [例2]解方程:-=4 (由学生在练习本上试着完成,然后再共同解答) 解:方程两边同乘以2x,得 600-480=8x 解这个方程,得x=15 检验:将x=15代入原方程,得 左边=4,右边=4,左边=右边,所以x=15是原方程的根. [师]很好!同学们现在不仅解出了分式方程的解,还有了检验结果的好习惯. 我这里还有一个题,我们再来一起解决一下(出示投影片 §3.4.2 B)(先隐藏小亮的解法) 议一议 解方程=-2. (可让学生在练习本上完成,发现有和小亮同样解法的同学,可用实物投影仪显示他的解法,并一块分析) [师]我们来看小亮同学的解法:=-2 解:方程两边同乘以x-3,得2-x=-1-2(x-3) 解这个方程,得x=3. [生]小亮解完没检验x=3是不是原方程的解. [师]检验的结果如何呢? [生]把x=3代入原方程中,使方程的分母x-3和3-x都为零,即x=3时,方程中的分式无意义,因此x=3不是原方程的根. [师]它是去分母后得到的整式方程的根吗? [生]x=3是去分母后的整式方程的根. [师]为什么x=3是整式方程的根,它使得最简公分母为零,而不是原分式方程的根呢?同学们可在小组内讨论. (教师可参与到学生的讨论中,倾听同学们的想法) [生]在解分式方程时,我们在分式方程两边都乘以最简公分母才得到整式方程.如果整式方程的根使得最简公分母的值为零,那么它就相当于分式方程两边都乘以零,不符合等式变形时的两个基本性质,得到的整式方程的解必将使分式方程中有的分式分母为零,也就不适合原方程了. [师]很好!分析得很透彻,我们把这样的不适合原方程的整式方程的根,叫原方程的增根. 在把分式方程转化为整式方程的过程中会产生增根.那么,是不是就不要这样解?或采用什么方法补救? [生]还是要把分式方程转化成整式方程来解.解出整式方程的解后可用检验的方法看是不是原方程的解. [师]怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗? [生]不用,产生增根的原因是这个根使去分母时的最简公分母为零造成的.因此最简单的检验方法是:把整式方程的根代入最简公分母.若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根.是增根,必舍去. [师]在解一元一次方程时每一步的变形都符合等式的性质,解出的根都应是原方程的根.但在解分式方程时,解出的整式方程的根一定要代入最简公分母检验.小亮就犯了没有检验的错误. Ⅲ.应用,升华 1.解方程: (1)=;(2)+=2. [分析]先总结解分式方程的几个步骤,然后解题. 解:(1)= 去分母,方程两边同乘以x(x-1),得 3x=4(x-1) 解这个方程,得x=4 检验:把x=4代入x(x-1)=4×3=12≠0, 所以原方程的根为x=4. (2)+=2 去分母,方程两边同乘以(2x-1),得 10-5=2(2x-1) 解这个方程,得x= 检验:把x=代入原方程分母2x-1=2×-1=≠0. 所以原方程的根为x=. 2.回顾,总结 出示投影片(§3.4.2 C) 想一想 解分式方程一般需要经过哪几个步骤? [师]同学们可根据例题和练习题的步骤,讨论总结. [生]解分式方程分三大步骤:(1)方程两边都乘以最简公分母,约去分母,化分式方程为整式方程; (2)解这个整式方程; (3)把整式方程的根代入最简公分母,看结果是否为零,使最简公分母为零的根是原方程的增根,应舍去.使最简公分母不为零的根才是原方程的根. 3.补充练习 出示投影片(§3.4.2 D) 解分式方程: (1)=; (2)=(a,h常数) [分析]强调解分式方程的三个步骤:一去分母;二解整式方程;三验根. 解:(1)去分母,方程两边同时乘以x(x+3000),得9000(x+3000)=15000x 解这个整式方程,得x=4500 检验:把x=4500代入x(x+3000)≠0. 所以原方程的根为4500 (2)=(a,h是常数且都大于零) 去分母,方程两边同乘以2x(a-x),得 h(a-x)=2ax 解整式方程,得x=(2a+h≠0) 检验:把x=代入原方程中,最简公分母2x(a-x)≠0,所以原方程的根为 x=. Ⅳ.课时小结 [师]同学们这节课的表现很活跃,一定收获不小. [生]我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可. [生]我明白了分式方程转化为整式方程为什么会产生增根. [生]我又一次体验到了“转化”在学习数学中的重要作用,但又进一步认识到每一步转化并不一定都那么“完美”,必须经过检验,反思“转化”过程. …… Ⅴ.课后作业 习题3.7 Ⅵ.活动与探究 若关于x的方程=有增根,则m的值是____________. [过程]首先增根是分式方程转化为整式方程时整式方程的根,但却使最简公分母为零. [结果]关于x的方程=有增根,则此增根必使3x-9=3(x-3)=0,所以增根为x=3.去分母,方程两边同乘以3(x-3),得3(x-1)=m2. 根据题意,得x=3是上面整式方程的根, 所以3(3-1)=m2,则m=±. ●板书设计 §3.4.2 分式方程(二) 一、提出问题 你能设法求出上一节课的分式方程 =. 二、探求分式方程解法 [例1]解方程= [例2]解方程-=4 三、议一议 小亮的解法对吗? 四、想一想 解分式方程一般步骤 1.去分母 2.解整式方程 3.检验- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年级数学下册 3.4.2分式方程二教案 北师大版 八年 级数 下册 3.4 分式 方程 教案 北师大
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文