八年级数学上册 数怎么又不够用了(第二课时)教案北师大版.doc
《八年级数学上册 数怎么又不够用了(第二课时)教案北师大版.doc》由会员分享,可在线阅读,更多相关《八年级数学上册 数怎么又不够用了(第二课时)教案北师大版.doc(8页珍藏版)》请在咨信网上搜索。
数怎么又不够用了 教学设计第(二)课时 教学设计思想 本节内容需一课时讲授;本节是前一节知识的延续,从前一节的定性描述转化为定量研究,进一步引起学生的思考.由创设的问题“面积为2的正方形的边长究竟是多少”作为引入,在学生已有的知识(这个数既不是整数也不是分数)的基础上提出的一个很自然的问题,让学生通过估计、借助计算器进行探索、讨论等途径,体会无限逼近的数学思想,得到“这个数是一个无限不循环小数”的结论;通过“做一做”让学生熟悉求无理数近似值的估算方法,同时体会无理数的无限不循环的特点.最后理解无理数的概念和无理数的判断的方法. 教学目标 (一)知识与技能 1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想. 2.会判断一个数是有理数还是无理数. (二)过程与方法 1.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力. 2.探索无理数的定义,以及无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练大家的思维判断能力. (三)情感、态度与价值观 1.让学生体会估算的意义,掌握估算的方法,发展学生的数感和估算能力. 2.充分调动学生的积极性,培养他们的合作精神,提高他们的辨识能力. 教学重点 1.无理数概念的探索过程. 2.用计算器进行无理数的估算. 3.了解无理数与有理数的区别,并能正确地进行判断. 教学难点 1.无理数概念的建立及估算. 2.用所学定义正确判断所给数的属性. 教学方法 老师指导学生探索法 教具准备 计算器. 教学过程 Ⅰ.创设问题情境,引入新课 [师]同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目. Ⅱ.讲授新课 1.导入 [师]请看图 大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由. [生]因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大. [师]大家能不能判断一下面积为2的正方形的边长a的大致范围呢? [生]因为a2大于1且a2小于4,所以a大致为1点几. [师]很好.a肯定比1大而比2小,可以表示为1<a<2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4<a<1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位、千分位上的数字. [生]因为1.412=1.9881,1.422=2.0164,所以a应比1.41大且比1.42小,所以百分位上数字为1. [生]因为1.4112=1.990921,1.4122=1.993744,1.4132=1.996569,1.4142=1.999396,1.4152=2.002225,所以a应比1.414大而比1.415小,即千分位上的数字为4. [生]因为1.41422=1.99996164,1.41432=2.00024449,所以a应比1.4142大且比1.4143小,即万分位上的数字为2. [师]大家非常聪明,请一位同学把自己的探索过程整理一下,用表格的形式反映出来. [生]我的探索过程如下. 边长a 面积S 1<a<2 1<S<4 1.4<a<1.5 1.96<S<2.25 1.41<a<1.42 1.9881<S<2.0164 1.414<a<1.415 1.999396<S<2.002225 1.4142<a<1.4143 1.99996164<S<2.00024449 [师]还可以继续下去吗? [生]可以. [师]请大家继续探索,并判断a是有限小数吗? [生]a=1.41421356…,还可以再继续进行,且a是一个无限不循环小数. [师]请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟) [生]b=2.236067978…,还可以再继续进行,b也是一个无限不循环小数. [生]边长b不会算到某一位时,它的平方恰好等于5,但我不知道为什么. [师]好.这位同学很坦诚,不会就要大胆地提出来,而不要冒充会,这样才能把知识学扎实,学透,大家应该向这位同学学习.这个问题我来回答.如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数. 2.无理数的定义 请大家把下列各数表示成小数. 3,,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间. [生]3=3.0,=0.8,=, , [生]3,是有限小数,是无限循环小数. [师]上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数. 像上面研究过的a2=2,b2=5中的a,b是无限不循环小数. 无限不循环小数叫无理数(irrational number). 除上面的a,b外,圆周率π=3.14159265…也是一个无限不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数. 3.有理数与无理数的主要区别 (1)无理数是无限不循环小数,有理数是有限小数或无限循环小数. (2)任何一个有理数都可以化为分数的形式,而无理数则不能. 4.例题讲解 下列各数中,哪些是有理数?哪些是无理数? 3.14,-,,0.1010010001…(相邻两个1之间0的个数逐次加1). 解:有理数有3.14,-,. 无理数有0.1010010001…. Ⅲ.课堂练习 (一)随堂练习 下列各数中,哪些是有理数?哪些是无理数? 0.4583,,-π,-,18. 解:有理数有0.4583,,-,18. 无理数有-π. (二)补充练习 判断题 (1)有理数与无理数的差都是有理数. (2)无限小数都是无理数. (3)无理数都是无限小数. (4)两个无理数的和不一定是无理数. 解:(1)错.例π-1是无理数. (2)错.例是有理数. (3)对.因为无理数就是无限不循环小数,所以是无限小数. (4)对.因为两个符号相反的无理数之和是有理数.例π-π=0. 下列各数中,哪些是有理数?哪些是无理数? 0.351,-,3.14159,-5.2323332…,123456789101112…(由相继的正整数组成). 解:有理数有0.351,-,3.14159, 无理数有-5.2323332…,123456789101112…. 在下列每一个圈里,至少填入三个适当的数. [生]有理数集合填0,,-3. 无理数集合填-π,-π,0.323323332…. Ⅳ.课时小结 本节课我们学习了以下内容. 1.用计算器进行无理数的估算. 2.无理数的定义. 3.判断一个数是无理数或有理数. Ⅴ.课后作业 1.P37习题2.2. 2.预习内容:平方根. Ⅵ.探究与活动 设面积为5π的圆的半径为a. (1)a是有理数吗?说说你的理由. (2)估计a的值(精确到十分位,并利用计算器验证你的估计). (3)如果精确到百分位呢? 解:∵πa2=5π ∴a2=5 (1)a不是有理数,因为a既不是整数,也不是分数,而是无限不循环小数. (2)估计a≈2.2. (3)a≈2.24. 板书设计 §2.1.2 数怎么又不够用了 一、导入 二、新课 1.无理数的定义 2.举例 三、练习 四、补充练习 五、课时小节 六、课后作业- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年级数学上册 数怎么又不够用了第二课时教案 北师大版 八年 级数 上册 怎么 够用 第二 课时 教案 北师大
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文