秋九年级数学上册 21.2.2 公式法教案3 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc
《秋九年级数学上册 21.2.2 公式法教案3 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc》由会员分享,可在线阅读,更多相关《秋九年级数学上册 21.2.2 公式法教案3 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc(6页珍藏版)》请在咨信网上搜索。
公式法 教学内容 1.一元二次方程求根公式的推导过程; 2.公式法的概念; 3.利用公式法解一元二次方程. 教学目标 理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程. 复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导公式,并应用公式法解一元二次方程. 重难点关键 1.重点:求根公式的推导和公式法的应用. 2.难点与关键:一元二次方程求根公式法的推导. 教学过程 一、复习引入 (学生活动)用配方法解下列方程 (1)6x2-7x+1=0 (2)4x2-3x=52 (老师点评) (1)移项,得:6x2-7x=-1 二次项系数化为1,得:x2-x=- 配方,得:x2-x+()2=-+()2 (x-)2= x-=± x1=+==1 x2=-+== (2)略 总结用配方法解一元二次方程的步骤(学生总结,老师点评). (1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m)2=n的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 二、探索新知 如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题. 问题:已知ax2+bx+c=0(a≠0)且b2-4ac≥0,试推导它的两个根x1=,x2= 分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去. 解:移项,得:ax2+bx=-c 二次项系数化为1,得x2+x=- 配方,得:x2+x+()2=-+()2 即(x+)2= ∵b2-4ac≥0且4a2>0 ∴≥0 直接开平方,得:x+=± 即x= ∴x1=,x2= 由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac≥0时,将a、b、c代入式子x=就得到方程的根. (2)这个式子叫做一元二次方程的求根公式. (3)利用求根公式解一元二次方程的方法叫公式法. (4)由求根公式可知,一元二次方程最多有两个实数根. 例1.用公式法解下列方程. (1)2x2-4x-1=0 (2)5x+2=3x2 (3)(x-2)(3x-5)=0 (4)4x2-3x+1=0 分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 解:(1)a=2,b=-4,c=-1 b2-4ac=(-4)2-4×2×(-1)=24>0 x= ∴x1=,x2= (2)将方程化为一般形式 3x2-5x-2=0 a=3,b=-5,c=-2 b2-4ac=(-5)2-4×3×(-2)=49>0 x= x1=2,x2=- (3)将方程化为一般形式 3x2-11x+9=0 a=3,b=-11,c=9 b2-4ac=(-11)2-4×3×9=13>0 ∴x= ∴x1=,x2= (3)a=4,b=-3,c=1 b2-4ac=(-3)2-4×4×1=-7<0 因为在实数范围内,负数不能开平方,所以方程无实数根. 三、巩固练习 教材P42 练习1.(1)、(3)、(5) 四、应用拓展 例2.某数学兴趣小组对关于x的方程(m+1)+(m-2)x-1=0提出了下列问题. (1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程. (2)若使方程为一元二次方程m是否存在?若存在,请求出. 你能解决这个问题吗? 分析:能.(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)≠0. (2)要使它为一元一次方程,必须满足: ①或②或③ 解:(1)存在.根据题意,得:m2+1=2 m2=1 m=±1 当m=1时,m+1=1+1=2≠0 当m=-1时,m+1=-1+1=0(不合题意,舍去) ∴当m=1时,方程为2x2-1-x=0 a=2,b=-1,c=-1 b2-4ac=(-1)2-4×2×(-1)=1+8=9 x= x1=,x2=- 因此,该方程是一元二次方程时,m=1,两根x1=1,x2=-. (2)存在.根据题意,得:①m2+1=1,m2=0,m=0 因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0 所以m=0满足题意. ②当m2+1=0,m不存在. ③当m+1=0,即m=-1时,m-2=-3≠0 所以m=-1也满足题意. 当m=0时,一元一次方程是x-2x-1=0, 解得:x=-1 当m=-1时,一元一次方程是-3x-1=0 解得x=- 因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=-. 五、归纳小结 本节课应掌握: (1)求根公式的概念及其推导过程; (2)公式法的概念; (3)应用公式法解一元二次方程; (4)初步了解一元二次方程根的情况. 六、布置作业 1.教材P45 复习巩固4. 2.选用作业设计: 一、选择题 1.用公式法解方程4x2-12x=3,得到( ). A.x= B.x= C.x= D.x= 2.方程x2+4x+6=0的根是( ). A.x1=,x2= B.x1=6,x2= C.x1=2,x2= D.x1=x2=- 3.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是( ). A.4 B.-2 C.4或-2 D.-4或2 二、填空题 1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________. 2.当x=______时,代数式x2-8x+12的值是-4. 3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____. 三、综合提高题 1.用公式法解关于x的方程:x2-2ax-b2+a2=0. 2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=-,x1·x2=;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值. 3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时元收费. (1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示) (2)下表是这户居民3月、4月的用电情况和交费情况 月份 用电量(千瓦时) 交电费总金额(元) 3 80 25 4 45 10 根据上表数据,求电厂规定的A值为多少? 答案: 一、1.D 2.D 3.C 二、1.x=,b2-4ac≥0 2.4 3.-3 三、1.x==a±│b│ 2.(1)∵x1、x2是ax2+bx+c=0(a≠0)的两根, ∴x1=,x2= ∴x1+x2==-, x1·x2=·= (2)∵x1,x2是ax2+bx+c=0的两根,∴ax12+bx1+c=0,ax22+bx2+c=0 原式=ax13+bx12+c1x1+ax23+bx22+cx2 =x1(ax12+bx1+c)+x2(ax22+bx2+c) =0 3.(1)超过部分电费=(90-A)·=-A2+A (2)依题意,得:(80-A)·=15,A1=30(舍去),A2=50- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 秋九年级数学上册 21.2.2 公式法教案3 新版新人教版-新版新人教版初中九年级上册数学教案 九年级 数学 上册 21.2 公式 教案 新版 新人 初中 数学教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:秋九年级数学上册 21.2.2 公式法教案3 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc
链接地址:https://www.zixin.com.cn/doc/7626222.html
链接地址:https://www.zixin.com.cn/doc/7626222.html