(西南专版)九年级数学下册 26.1 反比例函数教案 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc
《(西南专版)九年级数学下册 26.1 反比例函数教案 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc》由会员分享,可在线阅读,更多相关《(西南专版)九年级数学下册 26.1 反比例函数教案 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc(11页珍藏版)》请在咨信网上搜索。
第二十六章 反比例函数 本章内容属于“数与代数”领域,是在已经学习了平面直角坐标系和一次函数的基础上,再一次进入函数范畴,让学生进一步理解函数的内涵,并感受现实世界中存在各种函数,掌握如何应用函数知识解决实际问题.反比例函数是最基本的函数之一,是学习后续各类函数的基础. 本章的主要内容是反比例函数,教材中从几个学生熟悉的实际问题出发,引入反比例函数的概念,使学生逐步从对具体函数的感性认识上升到对抽象的反比例函数概念的理性认识. 第一节的内容是反比例函数的概念以及反比例函数的图象和性质.反比例函数y=(k为常数,k≠0)的图象分布在两个象限,当k>0时,图象分布在第一、三象限,y随x的增大(减小)而减小(增大);当k<0时,图象分布在第二、四象限,y随x的增大(减小)而增大(减小).第二节的内容是如何利用反比例函数解决现实世界中的实际问题以及如何用反比例函数解释现实世界中的一些现象. 教学中要注重数学思想的渗透,注意做好与已学内容的衔接,还要加强反比例函数与正比例函数的对比. 本章的重点是反比例函数的概念、图象和性质,图象是直观地描述和研究函数的重要工具.教材中给出了大量的具体的反比例函数的例子,用以加深学生对所学知识的理解和融会贯通.本章的难点是对反比例函数及其图象和性质的理解和掌握,教学时在这方面要投入更多的精力. 1.理解并掌握反比例函数的概念. 2.掌握反比例函数的图象和性质. 3.能灵活运用反比例函数知识解决实际问题. 本章教学约需4课时,具体分配如下: 26.1 反比例函数3课时 26.2 实际问题与反比例函数1课时 26.1 反比例函数 26.1.1 反比例函数 知识与技能 1.使学生理解并掌握反比例函数的概念. 2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式. 过程与方法 能根据实际问题中的条件确定反比例函数的解析式,体会函数的建模思想. 情感、态度与价值观 经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念,体会数学学习的重要性,培养学生学习数学的兴趣. 重点 理解反比例函数的概念,能根据已知条件写出函数解析式. 难点 理解反比例函数的概念. 一、创设情境,讲授新课 活动1.问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点? (1)京沪线铁路全程为1 463 km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化; (2)某住宅小区要种植一个面积为1 000 m2的矩形草坪,草坪的长y随宽x的变化而变化; (3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化. 解:(1)t=; (2)y=; (3)S=. 其中,v是自变量,t是v的函数; x是自变量,y是x的函数; n是自变量,S是n的函数. 上面的函数关系式,都具有y=的形式,其中k是非零常数. 活动2.下列问题中,变量间的对应关系可用怎样的函数关系式表示? (1)一个游泳池的容积为2 000 m3,注满游泳池所用的时间t随注水速度v的变化而变化; (2)某立方体的体积为1 000 cm3,立方体的高h随底面积S的变化而变化. 解:(1)t=; (2)h=. 概念:如果两个变量x,y之间的关系可以表示成y=的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零. 活动3.问题1:下列哪个等式中的y是x的反比例函数? y=4x,=3,y=6x+1,xy=123. 问题2:已知y是x的反比例函数,当x=2时,y=6.写出y关于x的函数关系式.求当x=4时,y的值. 师生行为:学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导. 1.解:只有xy=123是反比例函数. 2.分析:因为y是x的反比例函数,所以可设y=,再把x=2和y=6代入上式就可求出常数k的值. 解:设y=,因为x=2时,y=6, 所以有6=, 解得k=12, 因此y=, 把x=4代入y=,得y==3. 二、例题讲解 例1 下列等式中,哪些是反比例函数? (1)y=;(2)y=-;(3)xy=21;(4)y=;(5)y=-;(6)y=+3;(7)y=x-4. 解:(2)(3)(5)是反比例函数. 例2 函数y=-中,自变量x的取值范围是________. 解:x≠-2. 例3 当m取什么值时,函数y=(m-2)x3-m2是反比例函数? 分析:反比例函数y=(k≠0)的另一种表达式是y=kx-1(k≠0),这种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误. 解:由题意可知 解得m=-2. 三、巩固练习 1.已知y是x的反比例函数,并且当x=3时,y=-8. (1)写出y与x之间的函数关系式; (2)当y=2时,求x的值. 答案 (1)y=- (2)x=-12 四、课堂小结 反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量之间的关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识提升到理性认识,建立概念,摆脱其原型成为数学对象.反比例函数具有丰富的数学含义.通过举例、说理、讨论等活动用数学眼光审视某些实际现象. 例题非常简单,在例题的处理上注重培养学生形成写出规范的解题步骤的能力,同时拓宽学生的思路.在题目的设计和教学设计上注重了由浅入深的梯度,同时充分调动学生的积极性,发挥学生的主体作用. 26.1.2 反比例函数的图象和性质 第1课时 反比例函数的图象和性质(1) 知识与技能 1.会用描点法画反比例函数的图象. 2.结合图象分析并掌握反比例函数的性质. 过程与方法 体会分类讨论思想、数形结合思想的运用. 情感、态度与价值观 1.体会函数的表示方法,领会数形结合的思想方法. 2.在动手作图的过程中体会其中的乐趣,养成勤于动手、乐于探索的习惯. 重点 理解并掌握反比例函数的图象和性质. 难点 正确画出图象,通过观察、分析归纳出反比例函数的性质. 一、复习回顾,引入新课 1.画出函数y=3x+1的图象. 2.求函数y=3x+1的图象与x轴、y轴的交点的坐标. 这个过程由学生独立思考、操作、交流、回答,教师可与学生讨论交流,提问学生. 问:什么叫做反比例函数? 学生:如果两个变量x,y之间的关系可以表示成y=(k为常数,且k≠0)的形式,那么y是x的反比例函数.反比例函数的自变量x不能为零. 让学生猜想反比例函数的图象是什么样的,让学生自己尝试作反比例函数y=,y=,y=-,y=-的图象. 二、例题讲解 例1 画出反比例函数y=与y=-的图象. 反比例函数是我们第一次遇到的非直线函数图象,而且反比例函数的图象是由断开的两支曲线组成的,我们从描出的点的变化趋势可以看出,切记不能用直线连接. 师生共析:用平滑的曲线按自变量从小到大的顺序把描出的点连接起来,就可得到下图. 问:观察画出的图象,思考y=与y=-的图象有什么共同的特征?它们之间有什么关系?(教师在学生思考、回答后指出反比例函数的图象是双曲线,是轴对称图形,各有两条对称轴,它们都不会经过原点) 反比例函数y=的图象是由两支曲线组成的,当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限. 例2 已知反比例函数y=(m-1)xm2-3的图象在第二、四象限,求m的值,并指出在每个象限内y随x的变化情况. 分析:此题要考虑两个方面,一是反比例函数的定义,即y=kx-1(k≠0)中自变量x的指数是-1,二是根据反比例函数的性质:当图象位于第二、四象限时,k<0,则m-1<0,不要忽视这个条件. 解:∵y=(m-1)xm2-3是反比例函数,∴m2-3=-1,且m-1≠0. 又∵图象在第二、四象限,∴m-1<0. 解得m=±,且m<1,则m=-. 在每个象限内,y随x的增大而增大. 反比例函数y=的图象,当k>0时,在每一个象限内,y的值随x值的增大而减小;当k<0时,在每一个象限内,y的值随x值的增大而增大. 例3 如图,过反比例函数y=(x>0)的图象上任意两点A,B分别作x轴的垂线,垂足分别为C,D,连接OA,OB,设△AOC和△BOD的面积分别是S1,S2,比较它们的大小,可得( ) A.S1>S2 B.S1=S2 C.S1<S2 D.大小关系不能确定 分析:从反比例函数y=(k≠0)的图象上任一点P(x,y)分别向x轴、y轴作垂线段,与x轴、y轴所围成的矩形面积S=|xy|=|k|,由此可得S1=S2=|k|,故选B. 三、巩固练习 1.若函数y=(2m-1)x与y=的图象交于第一、三象限,则m的取值范围是________. 答案 <m<3 2.反比例函数y=-,当x=-2时,y=________;当x<-2时,y的取值范围是________;当-2<x<0时,y的取值范围是________. 答案 1 y<1 y>1 四、课堂小结 师:你对本节知识有哪些认识? 教师可让学生随意说出一个反比例函数,然后由一个学生说出它的性质. 在活动中,教师应重点关注: 1.不同层次的学生对本节课知识的认识程度. 2.学生独立面对困难和克服困难的能力. “反比例函数的图象与性质”是反比例函数的教学重点,学生需要在理解的基础上熟练运用.在本节课的教学中,有意识地加强反比例函数与正比例函数之间的对比. 借助计算机的动态演示比较两函数的图象,使学生更直观、更清楚地看清两函数的区别,从而使学生加深对两函数性质的理解. 观察反比例函数的图象,获取函数相关性质的信息有较大空间,考查学生能否对信息做出灵敏反应,应用时,能否善于分析和决策,灵活运用知识有效地解决问题,关注并追踪这些活动所引起的学生的持久变化. 第2课时 反比例函数的图象和性质(2) 知识与技能 1.使学生进一步理解并掌握反比例函数的图象与性质. 2.能灵活运用函数图象和性质解决一些较综合的问题. 过程与方法 体会函数不同表示方法的相互转换,对函数进行认识上的整合,逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的性质. 情感、态度与价值观 体会分类讨论思想、数形结合思想的运用,在动手作图的过程中体会其中的乐趣,养成勤于动手、乐于探索的习惯. 重点 理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题. 难点 学会从图象上分析、解决问题. 一、复习导入 首先复习上节课所学的内容: 1.什么是反比例函数? 2.反比例函数的图象是什么?有什么性质? 3.作函数图象的步骤:列表、描点、连线. 4.反比例函数的图象和性质: (1)反比例函数的图象是由两支曲线组成的(通常称为双曲线); (2)当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内; (3)反比例函数的图象与坐标轴不相交,它们都不过原点; (4)反比例函数的图象关于原点对称,是中心对称图形,也是轴对称图形. (5)反比例函数y=的图象,当k>0时,在每一个象限内,y的值随x的增大而减小;当k<0时,在每一个象限内,y的值随x的增大而增大. 二、例题讲解 例1 已知反比例函数的图象经过点A(2,6). (1)这个函数的图象分布在哪些象限?随自变量的增大如何变化? (2)点B(3,4),C(-2,-4)和D(2,5)是否在这个函数的图象上? 解:(1)设这个反比例函数的解析式为y=,因为它经过点A,把点A的坐标(2,6)代入函数解析式,得6=, 解得k=12, 即这个反比例函数的表达式为y=.因为k>0,所以这个函数的图象在第一、三象限内,y随x的增大而减小. (2)把点B,C和D的坐标代入y=,可知点B、点C的坐标满足函数关系式,点D的坐标不满足函数关系式,所以点B、点C在函数y=的图象上,点D不在该函数的图象上. 例2 如图是反比例函数y=的图象的一支. 根据图象回答下列问题: (1)图象的另一支在哪个象限?常数m的取值范围是什么? (2)在上图的图象上任取点A(a,b)和点B(a′,b′),如果a>a′,那么b和b′有怎样的大小关系? 师生活动:让学生先观察图象,然后结合反比例函数的图象完成此题.教师应给学生提供充分的交流时间和空间. 解:(1)反比例函数的图象的分布只有两种可能,分布在第一、三象限或者分布在第二、四象限,这个函数的图象的一支在第一象限,则另一支必在第三象限. 因此这个函数的图象分布在第一、三象限,所以m-5>0,解得m>5. (2)由函数的图象可知,在双曲线的一支上,y随x的增大而减小,因为a>a′,所以b<b′. 三、巩固练习 1.若直线y=kx+b经过第一、二、四象限,则函数y=的图象在( ) A.第一、三象限 B.第二、四象限 C.第三、四象限 D.第一、二象限 答案 B 2.已知点(-1,y1),(2,y2),(π,y3)在双曲线y=-上,则下列关系式正确的是( ) A.y1>y2>y3 B.y1>y3>y2 C.y2>y1>y3 D.y3>y1>y2 答案 B 四、课堂小结 1.进一步掌握了反比例函数的作图方法. 2.学会了利用反比例函数的性质画出反比例函数的图象. 本节课通过学习情境的创设改变了学生的学习方法,学生的学习能力、思维品质、探究意识及其态度、情感价值观等有了不同的发展.在这节课的教学中,我比较成功地实施了诱思探究教学,学生的积极性得到充分的调动.在教学过程中,注意引导学生仔细观察反比例函数图象的特征,根据其对称性列表、描点、连线,作图就会画得又快又美观,注意控制时间,充分理解教学意图,敢于放手.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 西南专版九年级数学下册 26.1 反比例函数教案 新版新人教版-新版新人教版初中九年级下册数学教案 西南 专版 九年级 数学 下册 反比例 函数 教案 新版 新人 初中 数学教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:(西南专版)九年级数学下册 26.1 反比例函数教案 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc
链接地址:https://www.zixin.com.cn/doc/7625452.html
链接地址:https://www.zixin.com.cn/doc/7625452.html