教与学 新教案九年级数学下册 26.1.2 反比例函数的图象和性质(第1课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc
《教与学 新教案九年级数学下册 26.1.2 反比例函数的图象和性质(第1课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc》由会员分享,可在线阅读,更多相关《教与学 新教案九年级数学下册 26.1.2 反比例函数的图象和性质(第1课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc(9页珍藏版)》请在咨信网上搜索。
反比例函数的图象和性质 典案一 教学设计 课题 第1课时 反比例函数的图象和性质 授课人 教 学 目 标 知识技能 1.进一步熟悉作函数图象的步骤,掌握反比例函数图象的作法; 2.逐步提高从函数图象中获取信息的能力,探索、总结反比例函数的性质. 数学思考 通过探究反比例函数图象的画法,体会无限趋近的思想,完整全面地画出反比例函数的图象. 问题解决 通过深入理解反比例函数中两个变量之间的关系来解决现实生活中的实际问题. 情感态度 体验数学的探索过程中充满观察、试验、归纳、类比等方法和思想. 教学 重点 理解并掌握反比例函数的图象和性质. 教学 难点 能够正确画出反比例函数的图象,通过观察、分析,归纳出反比例函数的性质. 授课 类型 新授课 课时 教具 多媒体 (续表) 教学活动 教学 步骤 师生活动 设计意图 回顾 教师提出问题: 1.回忆一次函数的解析式和其图象的形状,二次函数的解析式和其图象的形状. 2.回忆画函数图象的方法和步骤. 教师引导学生进行解答,学生回忆所学,教师做好补充和辅导. 复习研究函数的一般方法,为学习反比例函数的图象和性质做好铺垫. 活动 一: 创设 情境 导入 新课 【课堂引入】 画出反比例函数y=和y=-的图象. 师生分析:画函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0,按步骤画图如下: 图26-1-11 问题:两个函数图象有什么共同特征?它们之间有什么关系? 学生小组内讨论,并派代表回答问题,教师综合意见后进行归纳. 经历用“描点”法画出反比例函数图象的基本步骤,可以使学生对反比例函数的性质有一个初步的整体感知. 活动 二: 实践 探究 交流 新知 【活动1】 在平面直角坐标系中,分别画出反比例函数y=和y=-的图象. 师生活动:学生在给定的平面直角坐标系中进行操作,教师巡视指导. 在此活动中,教师重点关注: (1)学生能否掌握画反比例函数图象的步骤; (2)学生能否用光滑的曲线画函数图象. 【活动2】 观察函数y=和y=-以及函数y=和y=-的图象后,回答问题: (1)你能发现它们的共同特征及不同点吗? (2)每个函数的图象分别位于哪几个象限? (3)在每个象限内,y随x的变化如何变化? 学生结合图象分类讨论,归纳总结反比例函数图象的特点和性质.教师参与讨论,积极引导. 得到结论:(1)反比例函数y=(k为常数,k≠0)的图象是双曲线; (2)当k>0时,双曲线的两支分别位于第一、第三象限,在每一个象限内,y随x的增大而减小; (3)当k<0时,双曲线的两支分别位于第二、第四象限,在每一个象限内,y随x的增大而增大. 教师解析:反比例函数的图象是断开的.因为x≠0,所以函数增减性会出现“在每一个象限内”的说法. 通过再次画反比例函数的图象,巩固前面已获得的作图经验,提高学生画函数图象的能力,增强对图象的观察、分析、概括能力. (续表) 活动 三: 开放 训练 体现 应用 【应用举例】 例1 在反比例函数y=的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是__k>1__. 师生活动:学生根据问题自主解答,教师进行个别提问,学生阐述做题方法和思路,教师做好评价和辅导. 图26-1-12 通过例题的解答,加强对反比例函数图象及性质的理解,实现由知识向能力的转化. 【拓展提升】 例2 已知函数y=的图象如图26-1-13所示,有以下结论: ①m<0; ②在每个分支上,y随x的增大而增大; ③若点A(-1,a),B(2,b)在图象上,则a<b; ④若点P(x,y)在图象上,则点P1(-x,-y)也在图象上. 其中正确的结论是__①②④__(只填序号即可). 教师重点关注:学生对反比例函数性质的理解与把握;学生能否熟练掌握反比例函数的性质. 通过拓展提升,开阔学生的思路,促进学生思维的发展,形成有效的知识结构. 活动 四: 课堂 总结 反思 【达标测评】 练习:教材第6页练习第1,2题. 补充练习: 1.对于反比例函数y=,下列说法正确的是(D) A.图象经过点(-1,3) B.图象在第二、四象限 C.当x>0时,y随x的增大而增大 D.当x<0时,y随x的增大而减小 2.反比例函数y=在每个象限内的函数值y随x的增大而增大,则a的取值范围是__a<-1__. 3.已知函数y=的图象经过点(-3,4). (1)求k的值,并画出该函数图象的草图; (2)当x取什么值时,函数值小于0? 通过设置达标测评,进一步巩固所学新知,同时检测学习效果,做到“堂堂清”. 1.课堂总结: 教师与学生一起回顾所学主要内容: (1)本课时主要学习了哪些知识?你有什么收获?在知识应用过程中需要注意什么? (2)利用表格对本节课反比例函数的图象和性质进行总结归纳. 2.布置作业: 教材第8页习题26.1第3题. 注重课堂小结,激发学生参与的主动性,为每一个学生的发展与表现创造机会. (续表) 活动 四: 课堂 总结 反思 【知识网络】 提纲挈领,重点突出. 【教学反思】 ①[授课流程反思] 在讲授本课时,通过创设问题情境,引导学生类比前面学习的一次函数的图象和性质的方法,激发学生参与课堂的热情;通过列表、描点、连线画出反比例函数的图象,进而通过观察、分析、探究、概括得到反比例函数的性质,以加深对反比例函数的理解. ②[讲授效果反思] 在解析重难点时,给予学生充分的时间讨论、交流、归纳,师生共议得到反比例函数的性质,在讨论中发现、总结,使重点得以强化,难点得以突破. ③[师生互动反思] 在教学过程中,学生主动去观察、类比、发现、感受,实现学生主动参与、探究新知的目的,效果良好. ④[习题反思] 好题题号 错题题号 反思教学过程和教师表现,进一步提升操作流程和自身素质. 典案二 导学设计 【学习目标】 1.知识技能 会用描点法画反比例函数的图象,理解反比例函数的性质. 2.解决问题 会画反比例函数的图象,并能根据反比例函数的图象探究其性质. 3.数学思考 通过观察反比例函数的图象,分析、探究反比例函数的性质,培养学生探究、归纳以及概括的能力. 4.情感态度 在探究反比例函数的性质的过程中,让学生初步感知反比例函数图象的对称性. 【学习重难点】 1.重点:画反比例函数的图象,理解反比例函数的性质. 2.难点:理解反比例函数的性质,并能灵活运用. 课前延伸 【知识梳理】 1.一次函数的图象的形状是什么? 2.什么是反比例函数? 3.画函数图象的方法是什么?其一般步骤有哪些?应注意什么? 预习思考题 如何画反比例函数y=的图象?反比例函数的图象的形状是什么样的呢? 自主学习记录卡 1.自学本课内容后,你有哪些疑难之处? 2.你有哪些问题要提交小组讨论? 课内探究 一、课堂探究1(创设情境,引入课题) 在同一平面直角坐标系中画出反比例函数y=和y=-的图象. 问题1:由于反比例函数y=中,当x=0时,函数无意义,为了使描出的点具有代表性,因而在列表时,应该怎样取点? 问题2:反比例函数y=中,因为x≠0,故y≠0,那么函数的图象与x轴,y轴之间有什么关系? 二、课堂探究2(分组讨论,合作探究) 比较反比例函数y=和y=-的图象,它们有什么共同特征?它们之间有什么关系? 观察函数y=和y=-的图象,探究对于反比例函数y=的图象具有哪些性质?它可能与x轴,y轴相交吗? 三、反馈训练(运用新知,拓展训练) 1.(1)函数y=在第__一、三__象限,在每个象限内,y随x的增大而__减小__; (2)函数y=-在第__二、四__象限,在每个象限内,y随x的增大而__增大__. 变式:函数y=-在第__二、四__象限,当x>0时,y随x的增大而__增大__. 2.下列反比例函数:①y=;②y=-;③y=-;④y=.其中,图象位于第一、三象限的是__①④__(填序号);在每一个象限内,y随x的增大而增大的函数是__②④__. 3.已知反比例函数y=(m-1)x3-m2的图象在第二、四象限,求m的值,并指出在每个象限内,y随x的变化情况. 归纳总结,布置作业: 本节课你学习了哪些知识?你有哪些收获? 课后提升 已知反比例函数y=,分别根据下列条件求出字母k的取值范围. (1)函数图象位于第一、三象限; (2)在第二象限内,y随x的增大而增大.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教与学 新教案九年级数学下册 26.1.2 反比例函数的图象和性质第1课时教学设计 新版新人教版-新版新人教版初中九年级下册数学教案 教案 九年级 数学 下册 26.1 反比例 函数 图象
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:教与学 新教案九年级数学下册 26.1.2 反比例函数的图象和性质(第1课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc
链接地址:https://www.zixin.com.cn/doc/7623644.html
链接地址:https://www.zixin.com.cn/doc/7623644.html