秋九年级数学上册 第二十一章 一元二次方程 21.1 一元二次方程教案1 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc
《秋九年级数学上册 第二十一章 一元二次方程 21.1 一元二次方程教案1 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc》由会员分享,可在线阅读,更多相关《秋九年级数学上册 第二十一章 一元二次方程 21.1 一元二次方程教案1 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc(7页珍藏版)》请在咨信网上搜索。
21.1 一元二次方程 教学目标 1.理解一元二次方程及其相关概念,能够熟练地把一元二次方程化为一般形式。 2.会应用一元二次方程的解的定义解决有关问题。 3.在分析、揭示实际问题中的数量关系,并把实际问题转化为数学模型的过程中,感受方程是刻画现实世界中的数量关系的工具,增强对一元二次的感性认识。。 重难点关键 1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题. 2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念. 教学过程 一、复习引入 学生活动:列方程. 问题(1)如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米? 设梯子底端距墙为xm,那么, 根据题意,可得方程为___________. 问题(2)如图,如果,那么点C叫做线段AB的黄金分割点. 如果假设AB=1,AC=x,那么BC=________,根据题意,得:________. 整理得:_________. 问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少? 如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______. 整理,得:________. 老师点评并分析如何建立一元二次方程的数学模型,并整理. 二、探索新知 学生活动1:请口答下面问题. (1)上面三个方程整理后含有几个未知数? (2)按照整式中的多项式的规定,它们最高次数是几次? (3)有等号吗?或与以前多项式一样只有式子? 老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程. 因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程. 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式. 一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项. 学生活动2 提问: (1)问题1中一元二次方程的解是多少? (2)如果抛开实际问题,问题1中还有其它解吗? 老师点评:(1)问题1中x=6是x2-36=0的解,问题2中,x=10是x2+2x-120=0的解. (3)如果抛开实际问题,问题(1)中还有x=-6的解 为了与以前所学的一元一次方程等只有一个解的区别,我们称:一元二次方程的解叫做一元二次方程的根. 回过头来看:x2-36=0有两个根,一个是6,另一个是-6,但-6不满足题意;同理,问题2中的x=-12的根也满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解. 例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项. 分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等. 解:去括号,得: 40-16x-10x+4x2=18 移项,得:4x2-26x+22=0 其中二次项系数为4,一次项系数为-26,常数项为22. 例2已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m的值是( ) A.1 B.―1 C.0 D.无法确定 分析:根据方程的根的概念,直接代入方程,左右两边相等,但考虑到时一元二次方程,所以还要其二次项系数要不能等于0.由此得,(m-1)+1+1=0,解得m=-1,此时m-1=-2≠0,∴m=-1.故选B. 方法总结:方程的根是能使方程左右两边相等的未知数的值,在涉及方程根的题目的时候,我们一般是把这个根代入方程左右两边转化为求待定系数的方程来解决问题。 例3 如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为( ) A.32 B.126 C.135 D.144 分析:根据图象可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为x,则最大数为x+16,根据题意,得x(x+16)=192,解得x1=8,x2=﹣24(不合题意舍去),故最小的三个数为8,9,10,下面一行的数字分别比上面三个数大7,即为15,16,17,第3行三个数,比上一行三个数分别大7,即为22,23,24,这9个数的和为:8+9+10+15+16+17+22+23+24=144.故选D. 方法总结:在日历表中,在同一列上相邻的两个数,下一列比上一列的一个数大7;在同一行上相邻的两个数,右边的比左边的一个数大1,是解决此类问题的依据. 三、巩固练习 教材习题22.1练习1、2 四、应用拓展 例4.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程. 分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可. 证明:m2-8m+17=(m-4)2+1 ∵(m-4)2≥0 ∴(m-4)2+1>0,即(m-4)2+1≠0 ∴不论m取何值,该方程都是一元二次方程. 五、归纳小结(学生总结,老师点评) 本节课要掌握: (1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用. 六、布置作业 1.教材习题22.1 1、2. 2.选用作业设计. 作业设计 一、选择题 1.在下列方程中,一元二次方程的个数是( ). ①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-=0 A.1个 B.2个 C.3个 D.4个 2.方程2x2=3(x-6)化为一般形式后二次项系数、一次项系数和常数项分别为( ). A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,6 3.px2-3x+p2-q=0是关于x的一元二次方程,则( ). A.p=1 B.p>0 C.p≠0 D.p为任意实数 4.已知x=-1是方程ax2+bx+c=0的根(b≠0),则=( ). A.1 B.-1 C.0 D.2 二、填空题 5.方程3x2-3=2x+1的二次项系数为____,一次项系数为____,常数项为____. 6.一元二次方程的一般形式是__________. 7.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是_____. 8.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________. 三、综合提高题 9.a满足什么条件时,关于x的方程a(x2+x)=x-(x+1)是一元二次方程? 10. 关于x的方程(2m2+m)xm+1+3x=6可能是一元二次方程吗?为什么? 11.如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值. 12.如果关于x的一元二次方程ax2+bx+c=0(a≠0)中的二次项系数与常数项之和等 于一次项系数,求证:-1必是该方程的一个根. 13.一块矩形铁片,面积为1m2,长比宽多3m,求铁片的长,小明在做这道题时,是 这样做的: 设铁片的长为x,列出的方程为x(x-3)=1,整理得:x2-3x-1=0.小明列出方程后,想 知道铁片的长到底是多少,下面是他的探索过程: 第一步: x 1 2 3 4 x2-3x-1 -3 -3 所以,________<x<__________ 第二步: x 3.1 3.2 3.3 3.4 x2-3x-1 -0.96 -0.36 所以,________<x<__________ (1)请你帮小明填完空格,完成他未完成的部分; (2)通过以上探索,估计出矩形铁片的整数部分为_______,十分位为______.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 秋九年级数学上册 第二十一章 一元二次方程 21.1 一元二次方程教案1 新版新人教版-新版新人教版初中九年级上册数学教案 九年级 数学 上册 第二十一 一元 二次方程 教案 新版 新人 初中
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:秋九年级数学上册 第二十一章 一元二次方程 21.1 一元二次方程教案1 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc
链接地址:https://www.zixin.com.cn/doc/7621690.html
链接地址:https://www.zixin.com.cn/doc/7621690.html