八年级数学11.1函数的图象12教案人教版.doc
《八年级数学11.1函数的图象12教案人教版.doc》由会员分享,可在线阅读,更多相关《八年级数学11.1函数的图象12教案人教版.doc(9页珍藏版)》请在咨信网上搜索。
11.1变量与函数 函数的图象(一) 教学目标 (一)知道函数图象的意义; (二)能画出简单函数的图象,会列表、描点、连线; (三)能从图象上由自变量的值求出对应的函数的近似值。 教学重点和难点 重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。 难点:对已恬图象能读图、识图,从图象解释函数变化关系。 教学过程设计 (一)复习 1.什么叫函数? 2.什么叫平面直角坐标系? (二)新课 我们在前几节课已经知道,函数关系可以用解析式表示,像y=2x+1就表示以x 为自变量时,y是x的函数。 这个函数关系中,y与x的函数。 这个函数关系中,y与x的对应关系,我们还可通知在坐标平面内画出图象的方法来表示。 具体做法是 第一步:列表。(写出自变量x与函数值的对应表)先确定x的若干个值,然后填入相应的y值。 函数式y=2x+1 自变量x -2 -1 0 1 2 函数值y -3 -1 1 3 5 (这种用表格表示函数关系的方法叫做列表法) 第二步:描点,对于表中的每一组对应值,以x值作为点的横坐标,以对应的y值作为点的纵坐标,便可画出一个点。也就是由表中给出的有序实数对,在直角坐标系中描出相应的点。 第三步 连线,按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1的图象。 例1 在同一直角坐标系中画出下列函数式的图象: (1) y=-3x; (2)y=-3x+2; (2) 分析:按照列表、描点、连线三步操作。 解: 函数式(1)y=-3x 自变量x -2 -1 0 1 2 函数y 6 3 0 -3 -6 函数(2)y=-3x+2 自变量x -2 -1 0 1 2 函数y 8 5 2 -1 -4 (三)课堂练习 已知函数式y=-2x。用列表(x取-2,-1,2,1,2),描点,连线的程序,画出它的图象。 (四)小结 所有这些点的集合,叫做这个函数的图象。用图象来表示函数y与自变量x对应关系。 (五)作业 画出下列函数的图象: (1)y=4x-1; (2)y=4x+1 板书设计: 例1 在同一直角坐标系中画出下列函数式的图象: (3) y=-3x; (2)y=-3x+2; 分析:按照列表、描点、连线三步操作。 课后追记:画函数图像的步骤 函数的图象(二) 教学目标 (一)知道函数图象的意义; (二)能画出简单函数的图象,会列表、描点、连线; (三)能从图象上由自变量的值求出对应的函数的近似值。 教学重点和难点 重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。 难点:对已恬图象能读图、识图,从图象解释函数变化关系。 教学过程设计 (一)复习 1.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标? 2.如果点A的横坐标为3,纵坐标为5,请用记号表示A(3,5). (二)新课 函数关系可以用解析式表示,像y=2x+1就表示以x 为自变量时,y是x的函数。这个函数关系中,y与x的函数。这个函数关系中,y与x的对应关系,我们还可通知在坐标平面内画出图象的方法来表示。 具体做法是 第一步:列表。(写出自变量x与函数值的对应表)先确定x的若干个值,然后填入相应的y值。 函数式y=2x+1 自变量x -2 -1 0 1 2 函数值y -3 -1 1 3 5 (这种用表格表示函数关系的方法叫做列表法) 第二步:描点,对于表中的每一组对应值,也就是由表中给出的有序实数对,在直角坐标系中描出相应的点。 第三步 连线,按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1的图象。图13-24 例1 在直角坐标系中画出下列函数式的图象: y=-3x-3 分析:按照列表、描点、连线三步操作。 解: 函数(3)y=-3x-3 自变量x -2 -1 0 1 2 函数y 3 0 -3 -6 -9 (三)课堂练习 已知函数式y=-2x。用列表(x取-2,-1,2,1,2),描点,连线的程序,画出它的图象。 (四)小结 所有这些点的集合,叫做这个函数的图象。用图象来表示函数y与自变量x对应关系。 (五)作业 矩形的周长是12cm,设矩形的宽为x(cm),面积为y(cm2). (1) 以x为自变量,y为x的函数,写出函数关系式,并在关系式后面注明x的取值范围; (2) 列表、描点、连线画出此函数的图象 板书设计: 例1 在直角坐标系中画出下列函数式的图象: y=-3x-3 分析:按照列表、描点、连线三步操作。 课后追记:列函数关系式,要搞清楚变量之间的关系 函数的图象(三) 教学目标 (五) 知道函数图象的意义; (二)能画出简单函数的图象,会列表、描点、连线; (三)能从图象上由自变量的值求出对应的函数的近似值。 教学重点和难点 重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。 难点:对已恬图象能读图、识图,从图象解释函数变化关系。 教学过程设计 (五) 复习 (五) 在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标? 2.如果点A的横坐标为3,纵坐标为5,请用记号表示A(3,5). 3.请在坐标平面内画出A点。 (二)新课 例 某化工厂1月到12月生产某种产品的统计资料如下: X/月份 1 2 3 4 5 6 7 8 9 10 11 12 Y/产品吨数 2 3 3 4 5 6 6 6 5 4 5 7 (五) 在直角坐标系中以月份数作为点的横坐标,以该月的产值作为点的纵坐标画邮对应的点。把12个点画在同一直角坐标系中。 (五) 按照月份由小到大的顺序,把每两个点用线段连接起来。 (五) 解读图象:从图说出几月到几月产量是上升的、下降的或不升不降的。 (五) 如果从3月到6月的产量是持逐平稳增长的,请在图上查询4月15日的产量大约是多少吨? 解:(1),(2)见图13-26 (五) 产量上升:1月到2月;3月,4月,5月,6月逐月上升;10月,11月,12月逐月上升。 产量下降:8月到9月,9月到10月。 产量不升不降:2月到3月;6月到7月,7月到8月。 (4) 过x轴上的4.5处作y轴的平行线,与图象交于点A,则点A的纵坐标约4.5 ,所以4月15日的产量约为4.5吨。 例二课本第12页 (三)课堂练习课本第16页2 (四)小结 图象法——把自变量x作为点的横坐标,对应的函数值y作为点的纵坐标,在直角坐标系内描出对应的点,所有这些点的集合,叫做这个函数的图象。用图象来表示函数y与自变量x对应关系。 (五)作业课本第19页7 板书设计: 例 练习 课后追记:理解图像中个变量之间的关系 函数的图象(四) 教学目标 能从图象上由自变量的值求出对应的函数的近似值。 教学重点和难点 重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。 难点:对已恬图象能读图、识图,从图象解释函数变化关系。 教学过程设计 (一)复习 如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序实数对一一对应) (二)新课 例一矩形的周长是12cm,设矩形的宽为x(cm),面积为y(cm2). (1) 以x为自变量,y为x的函数,写出函数关系式,并在关系式后面注明x的取值范围; (2) 列表、描点、连线画出此函数的图象 例二书上第十三页例三 (四)小结 这三种表示函数的方法各有优缺点。 1.用解析法表示函数关系 优点:简单明了。能从解析式清楚看到两个变量之间的全部相依关系,并且适合进行理论分析和推导计算。 缺点:在求对应值时,有时要做较复杂的计算。 2.用列表表示函数关系 优点:对于表中自变量的每一个值,可以不通过计算,直接把函数值找到,查询时很方便。 缺点:表中不能把所有的自变量与函数对应值全部列出,而且从表中看不出变量间的对应规律。 3.用图象法表示函数关系 优点:形象直观,可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念形象化。 缺点:从自变量的值常常难以找到对应的函数的准确值。 函数的三种基本表示方法,各有各的优点和缺点,因此,要根据不同问题与需要,灵活地采用不同的方法。在数学或其他科学研究与应用上,有时把这三种方法结合起来使用,即由已知的函数解析式,列出自变量与对应的函数值的表格,再画出它的图象。 (五)作业课本第20页9 板书设计: 例一矩形的周长是12cm,设矩形的宽为x(cm),面积为y(cm2). (1) 以x为自变量,y为x的函数,写出函数关系式,并在关系式后面注明x的取值范围; (2) 列表、描点、连线画出此函数的图象 例二书上第十三页例三 课后追记:找出个变量之间的不关系 函数的图象(五) 教学目标 能从图象上由自变量的值求出对应的函数的近似值。 教学重点和难点 重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。 难点:对已恬图象能读图、识图,从图象解释函数变化关系。 教学过程设计 (一) 复习 1.什么叫函数? 2.什么叫平面直角坐标系? 3.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标? 4.如果点A的横坐标为3,纵坐标为5,请用记号表示A(3,5). 5.请在坐标平面内画出A点。 6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序实数对一一对应) (二) 新课 课本第17页例四 (三)课堂练习 课本第18页1,2 (三) 小结 到现在,我们已经学过了表示函数关系的方法有三种: 1.解析式法——用数学式子表示函数的关系。 2.列表法——通过列表给出函数y与自变量x的对应关系。 3.图象法——把自变量x作为点的横坐标,对应的函数值y作为点的纵坐标,在直角坐标系内描出对应的点,所有这些点的集合,叫做这个函数的图象。用图象来表示函数y与自变量x对应关系。 用图象法表示函数关系 优点:形象直观,可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念形象化。 缺点:从自变量的值常常难以找到对应的函数的准确值。 函数的三种基本表示方法,各有各的优点和缺点,因此,要根据不同问题与需要,灵活地采用不同的方法。在数学或其他科学研究与应用上,有时把这三种方法结合起来使用,即由已知的函数解析式,列出自变量与对应的函数值的表格,再画出它的图象。 (五)作业 书上第20页12 板书设计: 例四 表示函数关系的方法有三种: 课后追记:搞清楚题目的要求 函数图象的性质 活动目标: 1、利用几何画板的形象性,通过量的变化,验证并进一步研究函数图象的性质。 2、利用几何画板的动态性,从变化的几何图形中,寻找不变的几何规律。 3、学会作简单函数的图象,并对图象作初步了解。 4、通过本节课的教学,把几何画板作为学生认知的工具,从而激发学生学习和探索数学的兴趣。 活动重点:图形的性质和规律的探索 活动难点:几何画板的操作(作函数的图象) 活动设施:微机室(有液晶投影仪和大屏幕或大彩电);软件:windows操作平台、几何画板、office2000等、教师准备好的五个画板文件:hstx1.gsp、hstx2.gsp、hstx3.gsp 、ymdl1.gsp、ymdl2.gsp。 活动过程: 一、展示活动主题和目标: 二、活动过程: 操作练习一: 按下列步骤进行操作,并回答相应的问题。 1、打开c:\sketch\hstx1.gsp画板文件; 2、拖动点E和点F沿坐标轴运动(或双击按钮“动画1”),同时观看解析式中的k和b的变化。 ①当k>0时,图象经过哪几个象限? ②当k<0时,图象经过哪几个象限? 3、双击显示按钮后,在k>0和k<0两种情况下,拖动点P沿直线移动,观察y随x怎样变化?(或双击动画2按钮,单击鼠标左键动画停止,要继续动画,再双击动画2按钮) 4、先在坐标系内作出直线(或直接打开文件:c:\sketch\hstx2.gsp) 附:作图步骤 ①点击“文件”菜单中的“新绘图”命令; ②用“直尺工具”中的直线工具,在绘图板内画一直线,并用文本工具给直线上的两个空心点加上标签A和B; ③用“选择工具”选中直线后,点击“度量”菜单中的“方程”命令,得坐标系和直线的方程;然后,再进行以下操作,并回答问题: (1)用鼠标拖动直线进行平移,k和b中哪个变,哪个不变? (2)当直线通过原点时,b为多少?此时函数又叫什么函数? (3)拖动点A,使直线绕点B旋转,观察直线的倾斜程度与k之间的关系? 操作练习二: 1、打开文件:c:\sketch\hstx3.gsp 2、保持a不变,分别上下移动b、c改变b、c的大小时,抛物线的形状是否变化?上下移动a改变a的大小,注意观看抛物线的开口方向与什么有关?张口程度与什么有关? 3、上下移动c改变c的大小,看抛物线怎样变化? 4、分别改变a、b的大小,看抛物线的对称轴是否发生变化?由3和4可知,抛物线的对称轴与什么有关?与什么无关? 5、c保持不变,改变a、b时,抛抛线总是经过哪一点? 6、抛物线与x轴交点的个数与b2-4ac的符号有什么关系? 7、双击显示按钮,再双击动画按钮,观察y随x怎样变化? 8、当a=0时,函数的图象是什么?- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年 级数 11.1 函数 图象 12 教案 人教版
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文