八年级数学上册 探索勾股定理(第二课时)教案北师大版.doc
《八年级数学上册 探索勾股定理(第二课时)教案北师大版.doc》由会员分享,可在线阅读,更多相关《八年级数学上册 探索勾股定理(第二课时)教案北师大版.doc(11页珍藏版)》请在咨信网上搜索。
探索勾股定理 教学设计第(二)课时 教学设计思想: 本节内容需三课时讲授;勾股定理是反映自然界基本规律的一条重要结论.本节意图让学生自己经过观察、归纳、猜想和验证,发现勾股定理.初中学生思维活跃,求知欲强,好奇心浓,所以处理教材内容上尽量发挥学生的学习主动性.设计方格纸上计算面积,用拼图的方法验证等活动,以真正实现学生在知识、智力、能力和全面提高.为面向全体学生,进行小组合作学习,通过交流、议论、取长补短,引导学生团结协作,互帮互学,从而达到共同提高的目的. 教学目标 (一)知识与技能 1.掌握勾股定理,了解利用拼图验证勾股定理的方法. 2.运用勾股解决一些实际问题. (二)过程与方法 1.学会用拼图的方法验证勾股定理,培养学生的创新能力和解决实际问题的能力. 2.在拼图过程中,鼓励学生大胆联想,培养学生数形结合的意识. (三)情感、态度与价值观 利用拼图的方法验证勾股定理,是我国古代数学家的一大贡献.借助对学生进行爱国主义教育.并在拼图的过程中获得学习数学的快乐,提高学习数学的兴趣. 教学重点 勾股定理的证明及其应用. 教学难点 勾股定理的证明. 教学方法 教师引导和学生自主探索相结合的方法. 在用拼图的方法验证勾股定理的过程中.教师要引导学生善于联想,将形的问题与数的问题联系起来,让学生自主探索,大胆地联系前面知识,推导出勾股定理,并自己尝试用勾股定理解决实际问题. 教具准备 1.每个学生准备一张硬纸板、投影片三张. 教学过程 Ⅰ.创设问题情景,引入新课 [师]我们曾学习过整式的运算,其中平方差公式(a+b)(a-b)=a2-b2;完全平方公式(a±b)2=a2±2ab+b2是非常重要的内容.谁还能记得当时这两个公式是如何推出的? [生]利用多项式乘以多项式的法则从公式的左边就可以推出右边.例如(a+b)(a-b)=a2-ab+ab-b2=a2-b2,所以平方差公式是成立的. [生]还可以用拼图的方法来推出.例如:(a+b)2=a2+2ab+b2.我们可以用一个边长为a的正方形,一个边长为b的正方形,两个长和宽分别为a和b的长方形可拼成如下图所示的边长为(a+b)的正方形,那么这个大的正方形的面积可以表示为(a+b)2;又可以表示为a2+2ab+b2.所以(a+b)2=a2+2ab+b2. [师]由此我们可以看出用拼图的方法推证数学中的结论非常直观.上一节课我们已经通过数格子通过一些特例大胆地猜想出了勾股定理.同时又利用一些特例验证了勾股定理,但我们注意到我们不可能拿所有的直角三角形一一验证,靠一些特例归纳、猜想出来的结论不一定正确.因此我们需要用另一种方法说明直角三角形三边的关系. Ⅱ.讲授新课 1.拼一拼 (1)在一张硬纸板上画4个如下图所示全等的直角三角形.并把它们剪下来. (2)用这4个直角三角形拼一拼,摆一摆,看能否得到一个含有以斜边c为边长的正方形,你能利用它说明勾股定理吗? (对于上面2个问题,教师要引导学生大胆联想,将形与数的问题联系起来.鼓励学生大胆的拼摆,只要符合要求,教师都应予以鼓励,然后在小组内交流,同时提示学生根据自己拼出的图形,联系(a+b)2=a2+2ab+b2的拼图推证方法说明勾股定理). [生]我拼出了如下图所示的图形,中间是一个边长为c的正方形.观察图形我们不难发现,大的正方形的边长是(a+b).要利用这个图说明勾股定理,我们只要用两种方法表示这个大正方形的面积即可. 大正方形面积可以表示为:(a+b)2,又可以表示为:ab×4+(b-a). 对比这两种表示方法,可得出c2=ab×4+(b-a).化简、整理得c2=a2+b2.因此我们得到了勾股定理. [生]我拼出了和这个同学不一样的图,如下图所示,大正方形的边长是c,小正方形的边长为b-a,利用这个图形也可以说明勾股定理.因为大正方形的面积也有两种表示方法,既可以表示为c2,又可以表示为ab×4+(b-a)2.对比两种表示方法可得c2=ab×4+(b-a)2.化简得c2=a2+b2.同样得到了勾股定理. [师]真棒!同学们用拼图的方法,大胆地验证了勾股定理.利用拼图的方法验证勾股定理,是我国古代数学家的伟大贡献.在后面的课题学习中,我们还要继续研究它. 在所有的几何定理中,勾股定理的证明方法也许是最多的了.有人做过统计,说有五百余种.1940年,国外有人收集了勾股定理的365种证法,编了一本书.其实,勾股定理的证法不止这些,作者之所以选用了365种,也许他是幽默地想让人注意,勾股定理的证明简直到了每天一种的地步. [生]老师,我在查资料时,还发现勾股定理的证明还和美国的一个总统有关系,是这样吗? [师]是的.1876年4月1日,美国俄亥俄州共和党议员加菲尔德,颇有兴趣地在《新英格兰教育日志》上发表了他提出的一个勾股定理的证明.据他说,这是一种思想体操,并且还调皮地声称,他的这个证明是得到两党议员“一致赞同的”.由于1881年加菲尔德当上了美国第二十届总统,这样,他曾提出的那个证明也就成了数学史上的一段佳话. [生]能给我们介绍一下这位总统的证明方法吗? [师]可以.如下图所示.这就是这位总统用两个全等的直角三角形拼出的图形,和第一个同学用全等的四个直角三角形拼出来的图形对比一下,有联系. [生]总统拼出的图形恰好是第一个同学拼出的大正方形的一半. [师]同学们不妨自己从上图中推导出勾股定理. [生]上面的图形整体上拼成一个直角梯形.所以它的面积有两种表示方法.既可以表示为(a+b)·(a+b),又可以表示为ab×2+c2.对比两种表示方法可得(a+b)·(a+b)= ab×2+c2.化简,可得a2+b2=c2. [师]很好.同学们如果感兴趣的话,不妨自己也去寻找几种证明勾股定理的方法. 2.议一议 [师]前面我们讨论了直角三角形三边满足的关系.那么锐角三角形或钝角三角形的三边是否也满足这一关系呢? 观察上图,用数格子的方法判断图中两个三角形的三边关系是否满足a2+b2=c2. [师]上图中的△ABC和△A′B′C是什么三角形? [生]△ABC,△A′B′C′在小方格纸上,不难看出△ABC中,∠BCA>90°;△A′B′C′中,∠A′B′C′,∠B′C′A′,∠B′A′C′都是锐角,所以△ABC是钝角三角形,△A′B′C′是锐角三角形. [师]△ABC的三边上“长”出三个正方形.谁来帮我数一下每个正方形含有几个小格子. [生]以b为边长的正方形含有9个小格子,所以这个正方形的面积b2=9个单位面积;以a为边长的正方形中含有8个小格子,所以这个正方形的面积a2=8个单位面积;以c为边长的正方形中含有29个小格子,所以这个正方形的面积c2=29个单位面积. a2+b2=9+7=16个单位面积,c2=29个单位面积,所以在钝角三角形ABC中a2+b2≠c2. [师]锐角三角形A′B′C′中,如何呢? [生]以a为边长的正方形含5个小格子,所以a2=5个单位面积;以b为边长的正方形含有8个小格子,所以b2=8个单位面积;以c为边长的正方形含9个小格子,所以c2=9个单位面积.由此我们可以算出a2+b2=5+8=13个单位面积.在锐角三角形A′B′C′中,a2+b2≠c2. [师]通过对上面两个图形的讨论可进一步认识到只有在直角三角形中,a,b,c三边才有a2+b2=c2(其中a、b是直角边,c为斜边)这样的关系. [生]老师,我发现在钝角三角形ABC中,虽然a2+b2≠c2,但它们之间也有一种关系a2+b2<c2;在锐角三角形A′B′C′中,a2+b2>c2.它们恒成立吗? [师]这位同学很善于思考,的确如此.同学们课后不妨验证一下,你一定会收获不小. 3.例题讲解 [例1]飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4800米处,过了10秒后,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米? [例2]如下图所示,某人在B处通过平面镜看见在B正上方5米处的A物体,已知物体A到平面镜的距离为6米,问B点到物体A的像A′的距离是多少? [例3]在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来;水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,问这里的水深是多少? [师生共析] [例1]分析:根据题意,可以画出下图,A点表示男孩头顶的位置,C、B点是两个时刻飞机的位置,∠C是直角,可以用勾股定理来解决这个问题. 解:根据题意,得Rt△ABC中,∠C=90°,AB=5000米,AC=4800米.由勾股定理,得AB2=AC2+BC2.即50002=BC2+48002,所以BC=1400米. 飞机飞行1400米用了10秒,那么它1小时飞行的距离为1400×6×60=504000米=504千米,即飞机飞行的速度为504千米/时. 评注:这是一个实际应用问题,经过分析,问题转化为已知两边求直角三角形第三边的问题,这虽是一个一元二次方程的问题,学生可尝试用学过的知识来解决.同时注意,在此题中小孩是静止不动的. [例2]分析:此题要用到勾股定理,轴对称及物理上的光的反射知识. 解:如例2图,由题意知△ABA′是直角三角形,由轴对称及平面镜成像可知: AA′=2×6=12米,AB=5米; 在Rt△A′AB中,A′B2=AA′2+AB2=122+52=169=132米 所以A′B=13米,即B点到物体A的像A′的距离为13米. 评注:本题是以光的反射为背景,涉及到勾股定理、轴对称等知识.由此可见,数学是物理的基础. [例3]分析:在此问题中,要注意水草的长度与水深的关系,还要注意水草站立时和吹到一边,它的长度是不变的. 解:根据题意,得到下图,其中D是无风时水草的最高点,BC为湖面,AB是一阵风吹过水草的位置,CD=3分米,CB=6分米,AD=AB,BC⊥AD. 所以在Rt△ACB中,AB2=AC2+BC2,即(AC+3)2=AC2+62,AC2+6AC+9=AC2+36.6AC=27,AC=4.5.所以这里的水深为4.5分米. 评注:在几何计算题中,方程的思想十分重要. Ⅲ.课时小结 这节课,我们用拼图的方法验证了勾股定理,并运用勾股定理解决了生活中的实际问题. Ⅳ.课后作业 1.课本P11,习题6.2. 2.收集关于勾股定理的证明方法. Ⅴ.活动与探究 如下图,木长二丈,它的一周是3尺,生长在木下的葛藤缠木七周,上端恰好与木齐,问葛藤长多少? 过程:从表面上看,这道题与勾股定理无关系.但是如果你用一张直角三角形的纸片约一支圆柱形铅笔上缠绕,就会发现;这里的葛藤之长相当于直角三角形的斜边. 结果:根据题意,可得一条直角边(即高)长2丈即20尺,另一条直角边(即底边)长7×3=21(尺),因此葛藤长设为x尺,则有x2=202+212=841=292,所以x=29尺,即葛藤长为29尺. 板书设计 探索勾股定理(二) 一、用拼图法验证勾股定理 1. 由上图得(a+b)2=ab×4+c2 即a2+b2=c2; 2. 由上图可得c2=ab×4+(b-a)2 即a2+b2=c2 二、议一议 三、例题讲解 四、课时小结- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年级数学上册 探索勾股定理第二课时教案 北师大版 八年 级数 上册 探索 勾股定理 第二 课时 教案 北师大
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文