八年级数学上册 14.1 勾股定理 14.1.1 直角三角形三边的关系教案4 (新版)华东师大版-(新版)华东师大版初中八年级上册数学教案.doc
《八年级数学上册 14.1 勾股定理 14.1.1 直角三角形三边的关系教案4 (新版)华东师大版-(新版)华东师大版初中八年级上册数学教案.doc》由会员分享,可在线阅读,更多相关《八年级数学上册 14.1 勾股定理 14.1.1 直角三角形三边的关系教案4 (新版)华东师大版-(新版)华东师大版初中八年级上册数学教案.doc(8页珍藏版)》请在咨信网上搜索。
14.1.1 直角三角形三边的关系 【教学目标】 一、知识目标 1.在探索基础上掌握勾股定理。 2.掌握直角三角形中的边边关系和三角之间的关系。 3.通过拼图,用面积的方法说明勾股定理的正确性。 二、能力目标 1.已知两边,运用勾股定理列式求第三边。 2.应用勾股定理解决实际问题(探索性问题和应用性问题)。 3.学会简单的合情推理与数学说理,能写出简单的推理格式。 三、情感态度目标 学生通过适当训练,养成数学说理的习惯,培养学生参与的积极性,逐步体验数学说理的重要性。 【重点难点】 重点:在直角三角形中,知道两边,可以求第三边。 难点:应用勾股定理时斜边的平方等于两直角边的平方和。 疑点:灵活运用勾股定理。 【教学设想】 课型:新授课 教学思路:探索结论-验证结论-初步应用结论-应用结论解决实际问题。 【课时安排】2课时。 【教学设计】 第一课时 勾股定理 【本课目标】 1.在探索基础上掌握勾股定理。 2.掌握直角三角形中的边边关系和三角之间的关系。 【教学过程】 1.情境导入 以国际数学家大会的会徽和地转反映的直角三角形边的关系引入勾股定理。 2.自学指导: (1)、阅读教材108-109页,探索勾股定理的推导过程。 (2)、找出勾股定理的内容? 3.合作探究 (1)整体感知 由观察课本中图14.1.1和图14.1.2入手得出勾股定理;通过做一做的动手操作证实勾股定理;通过相同直角三角形的拼图体验,让学生找出多种不同的方法来说明勾股定理的正确性;通过对本课本第111页例1的求解巩固勾股定理。 (2)四边互动 互动1: 师:你们能数出图14.1.1中三块面积P、Q、R的数值吗?数数看. 生:根据图形进行操作. 由此得出:以直角三角形两直角边为边长的两个正方形的面积和等于以斜边为边长的正方形的面积。 师生共同归纳: ,即两直角边的平方和等于斜边的平方. 互动2: 师:你们能数出图14.1.2中三块面积P、Q、R的数值吗?数数看. 生:根据图形进行操作. 由此得出:以直角三角形两直角边为边长的两个正方形的面积和等于以斜边为边长的正方形的面积. 师生共同归纳, ,即两直角边的平方和等于斜边的平方. 互动3: 师:由上述操作你发现了一般规律了吗? 生:略 明确:在一个直角三角形中:两直角边的平方和等于斜边的平方。 互动4: 师:展示课本中做一做. 师:画出直角三角形ABC,用直尺量量斜边是多长好吗? 生:每人画出一个三角形,并动手测量后在小组中交流讨论,然后举手回答问题。 明确:师生合作通过操作证明勾股定理:. 互动5: 出示课本中图14.1.3、14.1.4和14.1.5。 师:你会拼出图14.1.4吗 生:动用操作 师:你会用面积等式说明勾股定理吗? 生:讨论交流,举手回答并说理。 明确:①大正方形面积减去小正方形面积等于四个直角三角形面积。 ②大正方形面积减去四个直角三角形面积等于小正方形面积。 ③大正方形面积等于四个直角三角形面积加上小正方形面积。 ④结论是。 师:你会拼出如图14.1.5所示的图形吗? 生:讨论交流,举手回答问题。 师:你能运用面积列出等式说明勾股定理吗? 生:讨论交流,举手回答问题,并尝试说理。 明确:①大正方形面积减去小正方形面积等于四个直角三角形面积。 ②大正方形面积减去四个直角三角形面积等于小正方形面积。 ③大正方形面积等于四个直角三角形面积加上小正方形面积。 ④结论是。 例1 . 在Rt△ABC中,已知∠B=90°,AB=6,BC=8,求AC. 4.达标反馈 (1)、求出下列直角三角形中未知边的长度。 (2)、已知:Rt△ABC中,AB=4,AC=3,则BC的长为 5.学习小结 (1)内容总结 直角三角形三边满足勾股定理:两直角边的平方和等于斜边的平方。 注意:应用勾股定理时应特别注意哪个角是直角。 (2)方法归纳 让学生经历观察、操作、交流合作、合理猜想等体验吸取知识。 6.实践活动:动手制作直角三角形,并以三边长度为边作一个你喜欢的正多边形,研究它们面积之间的关系。 7.巩固练习: (1)、课本111页练习题。 (2)、查阅有关勾股定理的历史资料。 (3)、(选做) 已知等腰直角三角形斜边的长为2cm,求这个三角形的周长? 第二课时 勾股定理的应用 【本课目标】 通过实例应用勾股定理,培养学生的知识应用技能。 【教学过程】 1、情境导入 我们学习了勾股定理,那么它在生活中有什么实际应用呢? 2、课前热身(自学指导) 注意应将例题中的实际问题转化为数学问题,抽象出直角三角形。 3、合作探究 (1)整体感知 通过运用勾股定理解题,训练培养学生应用知识的技能,通过阅读材料让学生体验勾股定理的妙用。 互动: A B C 例2 如图,Rt△ABC的斜边AC比直角边AB长2cm,另一直角边BC长为6cm,求AC的长。 解:由已知AB=AC-2,BC=6cm,根据勾股定理,得 AB2+BC2=(AC-2)2+62=AC2 解得AC=10(cm) 例3 如图14.1.7,为了求出湖两岸的A、B两点之间的距离,一个观测者在点C设桩,使三角形ABC恰好为直角三角形.通过测量,得到AC长160米,BC长128米.问从点A穿过湖到点B有多远? 解 在直角三角形ABC中, AC=160,BC=128, 根据勾股定理可得 = 96(米) 答:从点A穿过湖到点B有96米. 明确:在直角三角形中,两直角边的平方和等于斜边的平方: 例4(补充)小丁的妈妈买了一部34英寸(86厘米)的电视机。小丁量了电视机的屏幕后,发现屏幕只有70厘米长和50厘米宽,他觉得一定是售货员搞错了。你能解释这是为什么吗? 解:∵702+502=7400 862=7396 荧屏对角线大约为86厘米 ∴售货员没搞错 4、达标反馈 (1)、如图,小方格都是边长为1的正方形,求四边形ABCD的面积与周长. (2)假期中,王强和同学到某海岛上去玩探宝游戏,按照探宝图,他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走3千米,在折向北走到6千米处往东一拐,仅走1千米就找到宝藏,问登陆点A 到宝藏埋藏点B的距离是多少千米? 5、学习小结 (1)内容总结 运用勾股定理可以解决许多实际问题。 (2)方法归纳 通过动手操作、合作交流和亲身体验培养学生食好的学习方法,逐步养成优良的学习。 6、实践活动:利用勾股数确定直角的方法在测量中的应用,如测量河宽时可用勾股数确定直角,再利用直角三角形知识解决实际问题。 7、作业: (1)、课本第117页 习题14.1 3、4题。 (3)、(选做题)《九章算术》勾股章第6题:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长几何? (本题的意思是:有一水池一丈见方,池中生有一棵类似芦苇的植物,露出水面一尺,如把它引向岸边,正好与岸边齐,问水有多深,该植物有多长?)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年级数学上册 14.1 勾股定理 14.1.1 直角三角形三边的关系教案4 新版华东师大版-新版华东师大版初中八年级上册数学教案 八年 级数 上册 直角三角形 三边 关系 教案 新版 华东师大
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:八年级数学上册 14.1 勾股定理 14.1.1 直角三角形三边的关系教案4 (新版)华东师大版-(新版)华东师大版初中八年级上册数学教案.doc
链接地址:https://www.zixin.com.cn/doc/7620719.html
链接地址:https://www.zixin.com.cn/doc/7620719.html