九年级数学上册 6.2投针试验教案 北师大版.doc
《九年级数学上册 6.2投针试验教案 北师大版.doc》由会员分享,可在线阅读,更多相关《九年级数学上册 6.2投针试验教案 北师大版.doc(7页珍藏版)》请在咨信网上搜索。
6.2投针实验 通过第1节的学习,学生已认识到当实验次数较大时实验频率稳定于理论概率,并可据此估计某一事件发生的概率,但尚未有这方面的体验,义务教育阶段学生的认知水平可以掌握的有关概率模型大致分为三类:第一类问题没有理论概率,只能借助实验模拟获得其估计值.一般而言,它是一个纯粹的现实问题;第二类问题虽然存在理论概率,但其理论计算已经超出了义务教育阶段学生的认知水平,学生只能借助实验模拟获得其估计值;第三类问题只是简单的古典概型,理论上容易求出其概率,而本节选取了一个历史上较为著名的投针实验为题材.力图让学生通过亲身的实验。统计过程获得用实验方法估计复杂事件发生的概率的体验. 对于投针实验,教科书首先提出问题,并引导学生思考能否借助列表或树状图求出该针与平行线相交的概率,力图引起学生的认知冲突,产生实验估计的愿望.然后通过“做一做”具体估计其概率.因此本节课基本上是一节活动课,因而要注意学生的自主性,实验活动以及实验数据的汇总都可以由学生自己组织完成,同时,也为教师评价学生合作交流的意识和能力、学生的思维水平、学生的动手能力提供了一个很好的机会,此外,在实验过程中,有时针与线是否相交较难判断,学生可能为此发生一些争执,教师可以进行适当的指导,如建议学生忽略这次实验或者认为相交、不相交各计半次等,避免学生过多地停留于此. 教学目标 (一)教学知识点 能用实验的方法估计一些复杂的随机事件发生的概率. (二)能力训练要求 经历实验、统计等活动过程,在活动中进一步发展学生的合作交流的意识和能力. (三)情感与价值观要求 1.激发学生实事求是的科学态度. 2.亲历实验,提高学生学习数学的兴趣. 教学重点 能用实验的方法估计一些复杂的随机事件发生的概率. 教学难点 借助大量重复实验去感悟实验频率稳定于理论概率. 教学方法 小组活动. 教具准备 大头针,图钉,多媒体演示 教学过程 Ⅰ.提出质疑,引入新课 [师]上节课我们介绍了用树状图或列表格的方法计算随机事件的概率.也就是计算一些事件的概率就可以在某个试验之前,算出某个结果的概率.但这些方法有一个前提条件,是什么? [生]要求实验出现的各种结果是等可能的,并且实验出现的结果必须是有限个. [师]下面我们来看一个例子.比如掷一枚图钉,有几种结果?它们是等可能的吗? [生]有“朝天”和“倾斜”两个可能结果,但我觉得这两个可能的结果不是等可能的. [师]能不能说“朝天”的概率是,“倾斜”的概率也是呢? [生]当然不能. [师]再例如,掷一只墨水笔尖,也有“正”“反”两种可能,但出现的可能性相等吗? [生]不相等. [师]很好.一个试验,虽然结果有有限个,但各个结果出现的可能性不相等,这时怎样求某一事件的概率呢? [生]只有动手做大量的试验.因为我们知道:当实验次数很大时,实验频率稳定于理论概率,并可据此估计某一事件发生的概率. [师]看来,求这些事件发生的概率只有亲自做很多次实验了. Ⅱ.讲授新课 活动一:从一定高度落下的图钉,落地后可能钉尖着地,也可能钉帽着地.你估计哪种事件发生的概率大? 活动目的:利用“当实验次数较大时,实验频率稳定于理论概率”来估计某一事件发生的概率. 活动方式:小组合作交流,全班汇总实验数据,交流研讨. 活动工具:形状、大小完全相同的图钉. 活动步骤:1.分组:每组5人. 2.每组每人做20次实验,根据实验结果, 填写下表的表格: 实验结果 钉尖着地 钉帽着地 频数 频率 3.根据上表你认为哪种情况的频率较大? 4.分别汇总本小组其中两人、三人、四人、五人的实验数据,相应得到实验40次、60 次、80次、100次时钉帽着地的频率,填写下表,并绘制折线统计图. 实验次数 20 40 60 80 100 钉帽着地的频数 钉帽着地的频率 5.汇总全班各小组其一个组.两个组、三个组、四个组……的实验数据,相应得到实验100次、200次、300次、400次……时钉帽着地的频率,并绘制折线统计图. 6.由折线统计图,估计钉帽着地的概率. (注意:①图钉必须从一定高度自由落下,保证着地时的随机性;②组内同学合作时要进行适当的分工;③体现学生的自主性,实验活动以及实验数据的汇总等都可以由学生白行组织完成;④教师认真评价学生合作交流的意识和能力,学生的思维水平,学生的动手能力等 [师生共析]我们一同来研究一下,掷一枚图钉时,出现“钉帽着地”这一结果的概率. 将图钉掷200次,每掷20次,统计一下两个组同学“钉帽着地”这一结果出现的次数,并算出相应的频率,如下表. 将统计数据(“钉帽着地”的频率)画成折线统计图,看起来更直观. 实数累计次数 出现“顶帽着地”的次数 出现“顶帽着地”的频率 20 9 45% 40 25 62.5% 60 30 50% 80 46 57.5% 100 61 61% 120 71 59.2% 140 80 57.1% 160 90 56.3% 180 102 56.7% 200 113 56.5% 从图中可发现,“顶帽着地”的频率开始“摆动”得很厉害,随着试验次数的增加,这个 频率就开始比较稳定了,最后大致在56.5%左右摆动.由此我们可以估计“顶帽着地”的概率约为56.5%,即0.565. [师]在数学的历史上,有一个较为著名的投针实验: 平面上画着一些平行线,相邻的两条平行线之间的距离为a,向此平面任投一长度为l(l<a)的针,该针可能与其中某一条平行线相交,也可能与它们都不相交. 相交和不相交的可能性相同吗?你能通过列表或画树状图求出该针与平行线相交的概率吗? [生]相交和不相交的可能性不相同,由于结果的可能性不同,因此这个事件的概率也不能列表或画树状图求出该针与平行线相交的概率.也必须用“当实验次数较大时,实验频率稳定于理论概率”来估计该针与平行线相交的概率. [师]很好,我们还是分组活动. 活动二:平面上画着一些平行线,相邻的两条平行线之间的距离都是a,向此平面任投一长度为l(l<a)的针,该针可能与其中某一条平行线相交,也可能与它们不相交,估计针与平行线相交的概率. 活动目的:利用“当实验次数较大时,实验频率稳定于理论概率”,并据此估计针与平行线相交的概率. 活动方式:小组交流,全班研讨的方法. 活动工具:每组学生要在平面上画有相同距离“的一组平行线,并且有长度都为l的针(l<a).要求针必须粗细均匀. 活动步骤:1.分组,两人一组. 2.取一张白纸,在上面画一组平行线.它们之间的距离为2厘米,另外准备一根1厘米长的针.在纸下面垫一层柔软的东西,使针落在纸面上时不会弹跳起来. 3.每组至少完成100次实验,分别记录下其中相交和不相交的次数. 4.统计全班的实验数据,估计针与平行线相交的概率. (在具体实验的过程中,要求每组学生都确定相同的l和a,而对于针可由教师统一准备.这样做是因为如果l和a取不同的值,实验结果是不同的.那样全班就无法统计数据.为了保证随机性。要求学生从一定的高度随意抛针.两个同学适当分工,使学生自主活动,汇总实验数据.此外,在实验过程中,有时针与线是否相交较难判断,学生可能为此发生一些争执,教师可以适当地加以指导,如建议学生忽略这次实验或者认为相交、不相交各计半次,等等.避免学生过多地停留于此) [师]请同学们在用实验获得的数据估计针与平行线相交的概率的同时,用计算器计算实验总次数除以直线与平行线相交的次数,你会有什么惊人的发现? (同学们计算、讨论后回答) [生]得到的商好像是的一个近似值.而且投掷次数越多,得到的π的近似值越精确. [师]很好!其实这件事绝非偶然.请同学们打开书阅读“读一读”——投针实验.这篇短文介绍了关于投针实验的一些历史资料,以及其概率与π之间的关系,据此获得一种估计π的值的方法.并将其引申为现在广泛使用的蒙特卡洛方法,旨在给学生一定的拓展空间,让学生体会到有些高深的数学中蕴涵的思想极其朴素,从而激发学生的数学学习兴趣. [师]“读一读”中提到的蒙特卡罗方法是以概率和统计的理论、方法为基础的一种计算方法,它将所求解的问题与一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解,因此又称为统计模拟法或统计试验法. 蒙特卡罗是摩纳哥的一个城市,以赌博闻名于世.蒙特卡罗方法借用这一城市的名称,是为了象征性地表明该方法的概率统计特点.作为一种计算方法,蒙特卡罗方法是由 乌拉姆(S.M.Ulam.1909~1984)和冯·诺伊曼(J.vonNeumann,1903~1957)在20世纪40年代为研制核武器的需要而首先提出来的.在此之前,该方法的基本思想实际上已被统计学家所采用了. [生]把总的次数(即相交的与不相交的次数之和)除以相交的次数,得到的商一定是圆周率的近似值,投掷次数越多,得到π的近似值越精确,这件事并非偶然,老师,你能告诉我们其中的道理吗? [师]当针与直线相交时,必有其上的某1毫米处相交.而每1毫米最可能与直线相交的机会是相等的,它的次数应为全针与直线相交的最可能次数k的.如果针上某一段长n毫米,那么这一段与直线最可能相交的次数应为,即最可能的相交次数和针的长度成正比. 需要指出的是,这个最可能的相交次数只与针的长度成正比,而与针的形状无关.例如,我们将10毫米的针弯成两段,一段长x毫米,另一段长为(10-x)毫米,那么这两段的最可能与直线相交的次数分别为和.这样,全针的最可能相交次数仍为=k,即这个最可能相交次数与针的形状无关.当然,将针的形状弯成某种形状后,有时可能在针的某儿处都和直线相交,这时应把每一个交点都记作相交一次. 现在将针弯曲成一个圆形.假定这时的针的粗细仍是均匀的,且圆的直径等于20毫米,那么每投一次圆环总能和直线相交于两点(正好和两条直线相切也记作两个交点).投掷n次,相交次数为2n次.对于10毫米的针,它的最可能相交次数是k次.由于圆环的长是π·20毫米,等于针长的2π倍,所以圆环相交次数应是针的最可能的相交次数的2π倍,即2n=2π·k, 由此可得π= Ⅲ.课时小结 这节课我们学会了用实验的方法估计一些复杂随机事件发生的概率,并亲自体验到了“当实验次数较大时,实验频率稳定于理论概率,并可据此估计某一事件发生的概率”.经历实验、统计等活动过程,在活动过程中,同学们都能积极参与到数学活动中去,合作意识和思维能力及思维水平得到了不同程度的提高,认识了蒙特卡罗方法,并用它来估计π的近似值. Ⅳ.课后作业 1.习题6.3 2.继续做投针实验,估算π的值. Ⅴ.活动与探究 随便说出3个正数,以这3个数为边长一定能围成一个三角形吗?一定能围成一个钝角三角形(其中最大边的平方大于另两边的平方和)吗?估计能围成一个钝角三角形的概率. [过程]本题仍是利用实验的方法估计随机事件发生的概率,选择该题材的原因是其概率与π有关,并与“读一读”中内容相呼应.具体操作时,可以几个学生组成合作小组,每人写一个数在纸上,然后同时公布各自的数进行判断. 随便说出三个正数,以这三个正数为边不一定能组成一个三角形,如不能以1,3,5三个数为边长组成三角形;当然也不一定能组成一个钝角三角形;能围成一个钝角三角形的概率的估计值因人而异,因实验次数而异.事实上,不妨设所取三数为(a,b,c(0<a≤b≤c),若能构成钝角三角形,则a,b,c应满足a+b>c,a2+b2<c2.即>1, <1. [结果]其理论概率为. 板书设计 §6.2 投针实验 活动一:从一定高度落下的图钉,落地后可能钉尖着地,也可能顶帽着地,用实验的方法估计钉帽着地的概率,并在小组中交流. 活动二:投针试验.在平面上画距离为2厘米的平行线,另外准备一根长度为1厘米的粗细均匀的针,用实验的方法估计任投一根针,该针与平行线相交的概率.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级数学上册 6.2投针试验教案 北师大版 九年级 数学 上册 6.2 试验 教案 北师大
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文