八年级数学示范教案 三角形内角和定理的证明 鲁教版.doc
《八年级数学示范教案 三角形内角和定理的证明 鲁教版.doc》由会员分享,可在线阅读,更多相关《八年级数学示范教案 三角形内角和定理的证明 鲁教版.doc(8页珍藏版)》请在咨信网上搜索。
第六课时 ●课 题 §6.5 三角形内角和定理的证明 ●教学目标 (一)教学知识点 三角形的内角和定理的证明. (二)能力训练要求 掌握三角形内角和定理,并初步学会利用辅助线证题,同时培养学生观察、猜想和论证能力. (三)情感与价值观要求 通过新颖、有趣的实际问题,来激发学生的求知欲. ●教学重点 三角形内角和定理的证明. ●教学难点 三角形内角和定理的证明方法. ●教学方法 实验、讨论法. ●教具准备 三角形纸片数张. 投影片三张 第一张:问题(记作投影片§6.5 A) 第二张:实验(记作投影片§6.5 B) 第三张:小明的想法(记作投影片§6.5 C) ●教学过程 Ⅰ.巧设现实情境,引入新课 [师]大家来看一机器零件(出示投影片§6.5 A) 工人师傅将凹型零件(图6-34)加工成斜面EC与槽底CD成55°的燕尾槽(图6-35)的程序是:将垂直的铣刀倾斜偏转35°角(图6-5),就能得到55°的燕尾槽底角. 图6-34 图6-35 图6-36 为什么铣刀偏转35°角,就能得到55°的燕尾槽底角呢? Ⅱ.讲授新课 [师]为了回答这个问题,先观察如下的实验(电脑实验,或实物实验) 用橡皮筋构成△ABC,其中顶点B、C为定点,A为动点(如图6-37),放松橡皮筋后,点A自动收缩于BC上,请同学们考察点A变化时所形成的一系列的三角形:△A1BC、△A2BC、△A3BC……其内角会产生怎样的变化呢? 图6-37 [生甲]当点A离BC越来越近时,∠A越来越接近180°,而其他两角越来越接近于 0°. [生乙]三角形各内角的大小在变化过程中是相互影响的. [师]很好.在三角形中,最大的内角有没有等于或大于180°的? [生丙]三角形的最大内角不会大于或等于180°. [师]很好.看实验:当点A远离BC时,∠A越来越趋近于0°,而AB与AC逐渐趋向平行,这时,∠B、∠C逐渐接近为互补的同旁内角.即∠B+∠C→180°. 请同学们猜一猜:三角形的内角和可能是多少? [生齐声]180° [师]180°,这一猜测是否准确呢?我们曾做过如下实验:(出示投影片§6.5 B) 实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折, 使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果. (1) (2) (3) (4) 图6-38 实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起. [师]由实验可知:我们猜对了!三角形的内角之和正好为一个平角. 但观察与实验得到的结论,并不一定正确、可靠,这样就需要通过数学证明.那么怎样证明呢?请同学们再来看实验. 图6-39 这里有两个全等的三角形,我把它们重叠固定在黑板上,然后把三角形ABC的上层∠B剥下来,沿BC的方向平移到∠ECD处固定,再剥下上层的∠A,把它倒置于∠C与∠ECD之间的空隙∠ACE的上方. 这时,∠A与∠ACE能重合吗? [生齐声]能重合. [师]为什么能重合呢? [生齐声]因为同位角∠ECD=∠B.所以CE∥BA. [师]很好,这样我们就可以证明了:三角形的内角和等于180°.接下来同学们来证明:三角形的内角和等于180°这个真命题. 这是一个文字命题,证明时需要先干什么呢? [生]需要先画出图形,根据命题的条件和结论,结合图形写出已知、求证. [师]对,下面大家来证明,哪位同学上黑板给大家板演呢? 图6-40 [生甲]已知,如图6-40,△ABC. 求证:∠A+∠B+∠C=180° 证明:作BC的延长线CD,过点C作射线CE∥AB.则 ∠ACE=∠A(两直线平行,内错角相等) ∠ECD=∠B(两直线平行,同位角相等) ∵∠ACB+∠ACE+∠ECD=180°(1平角=180°) ∴∠A+∠B+∠ACB=180°(等量代换) 即:∠A+∠B+∠C=180°. [生乙]老师,我的证明过程是这样的: 证明:作BC的延长线CD,作∠ECD=∠B. 则:EC∥AB(同位角相等,两直线平行) ∴∠A=∠ACE(两直线平行,内错角相等) ∵∠ACB+∠ACE+∠ECD=180°(1平角=180°) ∴∠ACB+∠A+∠B=180°(等量代换) [师]同学们写得证明过程很好,在证明过程中,我们仅仅添画了一条射线CE,使处于原三角形中不同位置的三个角,巧妙地拼凑到一起来了.为了证明的需要,在原来的图形上添画的线叫做辅助线.在平面几何里,辅助线通常画成虚线. 我们通过推理的过程,得证了命题:三角形的内角和等于180°是真命题,这时称它为定理.即:三角形的内角和定理. 小明也在证明三角形的内角和定理,他是这样想的.大家来议一议,他的想法可行吗?(出示投影片§6.5 C) 图6-41 在证明三角形内角和定理时,小明的想法是把三个角“凑”到A处,他过点A作直线PQ∥BC.(如图6-41)他的想法可行吗? 你有没有其他的证法. [生甲]小明的想法可行.因为: ∵PQ∥BC(已作) ∴∠PAB=∠B(两直线平行,内错角相等) ∠QAC=∠C(两直线平行,内错角相等) ∵∠PAB+∠BAC+∠QAC=180°(1平角=180°) ∴∠B+∠BAC+∠C=180°(等量代换) 图6-42 [生乙]也可以这样作辅助线.即:作CA的延长线AD,过点A作∠DAE=∠C(如图6-42). [生丙]也可以在三角形的一边上任取一点,然后过这一点分别作另外两边的平行线,这样也可证出定理. 图6-43 即:如图6-43,在BC上任取一点D,过点D分别作DE∥AB交AC于E,DF∥AC交AB于F. ∴四边形AFDE是平行四边形(平行四边形的定义) ∠BDF=∠C(两直线平行,同位角相等) ∠EDC=∠B(两直线平行,同位角相等) ∴∠EDF=∠A(平行四边形的对角相等) ∵∠BDF+∠EDF+∠EDC=180°(1平角=180°) ∴∠A+∠B+∠C=180°(等量代换) [师]同学们讨论得真棒.接下来我们做练习以巩固三角形内角和定理. Ⅲ.课堂练习 (一)课本P196随堂练习1、2. 图6-44 1.直角三角形的两锐角之和是多少度?等边三角形的一个内角是多少度?请证明你的结论. 答案:90° 60° 如图6-44,在△ABC中,∠C=90° ∵∠A+∠B+∠C=180° ∴∠A+∠B=90°. 图6-45 如图6-45,△ABC是等边三角形,则:∠A=∠B=∠C. ∵∠A+∠B+∠C=180° ∴∠A=∠B=∠C=60° 图6-46 2.如图6-46,已知,在△ABC中,DE∥BC,∠A=60°,∠C=70°,求证:∠ADE=50°. 证明:∵DE∥BC(已知) ∴∠AED=∠C(两直线平行,同位角相等) ∵∠C=70°(已知) ∴∠AED=70°(等量代换) ∵∠A+∠AED+∠ADE=180°(三角形的内角和定理) ∴∠ADE=180°-∠A-∠AED(等式的性质) ∵∠A=60°(已知) ∴∠ADE=180°-60°-70°=50°(等量代换) (二)读一读P197. (三)看课本P195~196,然后小结. Ⅳ.课时小结 这堂课,我们证明了一个很有用的三角形内角和定理.证明的基本思想是:运用辅助线将原三角形中处于不同位置的三个内角集中在一起,拼成一个平角.辅助线是联系命题的条件和结论的桥梁,今后我们还要学习它. Ⅴ.课后作业 (一)课本P198习题6.6 1、2 (二)1.预习内容P199~200 2.预习提纲 (1)三角形内角和定理的推论是什么? (2)三角形内角和定理的推论的应用. Ⅵ.活动与探究 1.证明三角形内角和定理时,是否可以把三角形的三个角“凑”到BC边上的一点P?(如图6-47(1)),如果把这三个角“凑”到三角形内一点呢?(如图6-47(2))“凑”到三角形外一点呢?(如图6-47(3)),你还能想出其他证法吗? (1) (2) (3) 图6-47 [过程]让学生在证明这个题的过程中,进一步了解三角形内角和定理的证明思路,并且了解一题的多种证法,从而拓宽学生的思路. [结果]证明三角形内角和定理时,既可以把三角形的三个角“凑”到BC边上的一点P,也可以把三个角“凑”到三角形内一点;还可以把这三个角“凑”到三角形外一点. 证明略. ●板书设计 §6.5 三角形内角和定理的证明 一、三角形内角和定理 三角形三个内角的和等于180° 图6-48 已知,如图6-48,△ABC. 求证:∠A+∠B+∠C=180° 证明:作BC的延长线CD,过点C作射线CE∥BA,则:∠A=∠ACE() ∠ECD=∠B() ∵∠ECD+∠ACE+∠ACB=180°() ∴∠A+∠B+∠ACB=180°() 二、议一议 三、课堂练习 四、课时小结 五、课后作业- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年级数学示范教案 三角形内角和定理的证明 鲁教版 八年 级数 示范 教案 三角形 内角 定理 证明
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文