秋九年级数学上册 第二十四章 圆 24.1 圆的有关性质 24.1.4 圆周角教案3 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc
《秋九年级数学上册 第二十四章 圆 24.1 圆的有关性质 24.1.4 圆周角教案3 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc》由会员分享,可在线阅读,更多相关《秋九年级数学上册 第二十四章 圆 24.1 圆的有关性质 24.1.4 圆周角教案3 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc(4页珍藏版)》请在咨信网上搜索。
24.1.4 圆周角 圆内接四边形的性质及圆周角定理的综合运用 一、教学目标 1.知道圆内接多边形和多边形的外接圆的意义,知道圆内接四边形的对角互补,会简单运用这个结论. 2.培养演绎推理能力和识图能力. 二、教学重点和难点 1.重点:圆内接四边形的对角互补. 2.难点:结论的证明. 三、教学过程 (一)基本训练,巩固旧知 1.填空:如图, x= °. 2.填空:如图,∠BAC=55°,∠CAD=45°, 则∠DBC= °,∠BDC= °, ∠BCD= °. 3.用三角尺画出下面这个圆的圆心. (二)创设情境,导入新课 (师出示下面的板书) 圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半. 推论1:同弧或等弧所对的圆周角相等. 推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 师:(指准板书)前面我们学习了圆周角定理和它的两个结论,本节课我们要学习什么?我们要学习圆周角定理的第三个推论(板书:推论3). 师:推论3怎么说?让我们先来看下面的问题. (三)尝试指导,讲授新课 (师出示下图) 师:(指准图)这是四边形ABCD,这个四边形有一个特点,什么特点?(稍停)这个四边形的四个顶点,点A,点B,点C,点D都在⊙O上,我们把这个四边形叫做圆内接四边形(板书:四边形ABCD叫做圆内接四边形),我们还把⊙O叫做四边形ABCD的外接圆(板书:⊙O叫做四边形ABCD的外接圆). 师:(出示圆内接三角形图片,并指准)这是一个三角形,这个三角形的所有顶点都在这个圆上,我们把这个三角形叫做圆内接三角形,把这个圆叫做这个三角形的外接圆. 师:(出示圆内接五边形图片,并指准)这是五边形,这个五边形的所有顶点都在这个圆上,我们把这个五边形叫做圆内接五边形,把这个圆叫做这个五边形的外接圆. 师:(出示圆内接五边形图片,并指准)一般地说,如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆. 师:知道了圆内接多边形的概念,(指黑板上的圆内接四边形)现在我们还是回来看圆内接四边形. 师:圆内接四边形有一个重要的性质,什么性质?圆内接四边形的对角互补(板书:圆内接四边形的对角互补). 师:圆内接四边形的对角互补,什么意思?(指准图)就是说,∠A+∠C=180°,∠B+∠D=180°,(板书:∠A+∠C=180°,∠B+∠D=180°). 师:用圆周角定理可以推出这个结论,怎么推?大家自己先想一想(让生思考片刻). 师:我们一起来证明,(指板书)先证明∠A+∠C=180°. 师:怎么证明∠A+∠C=180°?连结OB,OD(边讲边用虚线连结OB,OD). 师:(把描成红色,并指准)这条红弧所对的圆周角是哪个? 生:(齐答)∠C. 师:红弧所对的圆周角是∠C(边讲边用红笔标∠C),那红弧所对的圆心角是哪个? 生:(齐答)∠BOD. 师:红弧所对的圆心角是∠BOD(边讲边用红笔标∠BOD). 师:(把描成黄色,并指准)这条黄弧所对的圆周角是哪个? 生:(齐答)∠A. 师:黄弧所对的圆周角是∠A(边讲边用红笔标∠A),那黄弧所对的圆心角是哪个? 生:…… 师:(指准图)黄弧所对的圆心角是这个角(边讲边用黄笔标这个角). 师:(指准图)根据圆周角定理,∠A等于这个圆心角的一半,∠C等于这个圆心角的一半,所以∠A+∠C等于这个角加上这个角的一半.这个角加上这个角等于360°,所以∠A+∠C等于360°的一半,等于180°. 师:同样道理可以证明∠B+∠D=180°. 师:(指板书)推论3是一个很有用的结论,下面就请同学们利用这个结论来做几个练习. (四)试探练习,回授调节 4.如图,四边形ABCD是⊙O的内接四边形,∠A=60°, 填空: (1)∠BCD= °; (2)∠DCE= °; (3)∠B+∠D= °. 5.如图,四边形ABCD是⊙O的内接四边形, ∠BOD=100°, 则∠BAD= °, ∠BCD= °. (五)尝试指导,讲授新课 师:下面我们来看一道例题. (师出示例题) 例 求证:圆内接四边形的任何一个外角都等于它的内对角. (师画出图形写出已知求证,然后让生说证明思路,最后师写出证明过程,图形、已知、求证及证明过程如下) 已知:如图,四边形ABCD是⊙O的内接四边形. 求证:∠DCE=∠A. 证明:∵∠DCE+∠BCD=180°, 又∵∠A+∠BCD=180°, ∴∠DCE=∠A. (六)归纳小结,布置作业 师:(指准板书)本节课我们学习了圆周角定理的推论3,圆内接四边形的对角互补;还学习了一个例题,利用推论3证明了圆内接四边形的任何一个外角都等于它的内对角.这个结论像别的定理、推论一样可以在做题的时候直接拿来用. (作业:P88习题6.7.) 课外补充作业 6.如图,∠A=30°,∠ABC=50°,则∠E= °, ∠D= °,∠ACB= °. 四、板书设计 圆周角定理…… 图 例 推论1…… 四边形ABCD叫做圆内接四边形 推论2…… ⊙O叫做四边形ABCD的外接圆 推论3…… ∠A+∠C=180°,∠B+∠D=180°- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 秋九年级数学上册 第二十四章 24.1 圆的有关性质 24.1.4 圆周角教案3 新版新人教版-新版新人教版初中九年级上册数学教案 九年级 数学 上册 第二 十四 有关 性质 圆周角 教案 新版
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:秋九年级数学上册 第二十四章 圆 24.1 圆的有关性质 24.1.4 圆周角教案3 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc
链接地址:https://www.zixin.com.cn/doc/7614004.html
链接地址:https://www.zixin.com.cn/doc/7614004.html