九年级数学上册 第四章 图形的相似 4.4 探索三角形相似的条件教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc
《九年级数学上册 第四章 图形的相似 4.4 探索三角形相似的条件教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc》由会员分享,可在线阅读,更多相关《九年级数学上册 第四章 图形的相似 4.4 探索三角形相似的条件教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc(9页珍藏版)》请在咨信网上搜索。
4.4.1探索三角形相似的条件(1) 教学目的 1.使学生理解相似三角形的定义,掌握定义中的两个条件. 2.使学生掌握相似三角形判定定理1. 3.使学生初步掌握相似三角形的判定定理1的应用. 重点:准确找出相似三角形的对应边和对应角度. 难点:掌握相似三角形判定定理1及其应用. 教学过程 一、讨论相似三角形的定义 请同学们都拿出文具盒中的三角板,观察它们之间的关系,再与教师手中的木制三角板比较,观察这些三角形的关系,这是有全等的关系也有相似的关系.从全等与相似的类比,不难得到相似三角形的定义. 二、 给出定义 1. 从∠A=∠A,∠B=∠B,∠C=∠C,AB:A’B’=BC:B’C’=AC:A’C’ 可知△ABC∽ △A’B’C’. 2. 板书定义.叫学生写在笔记本上. 三、合作学习 合探1 同学们观察我们的直角三角尺,直观上看它们是什么关系?到底需要满足几个条件两个三角形能够相相似? 合探2 与同伴合作,两个人分别画△ABC和△A′B′C′,使得∠A和∠A′都等于∠α,∠B和∠B′都等于∠β,此时,∠C与∠C′相等吗?三边的比相等吗?这样的两个三角形相似吗?改变∠α,∠β的大小,再试一试. 四、导入定理 判定定理1:两角分别相等的两个三角形相似. 这个定理的出现为判定两三角形相似增加了一条新的途径. 例:如图,D,E分别是△ABC的边AB,AC上的点,DE∥BC,AB=7,AD=5,DE=10,求BC的长。 解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C. ∴△ADE∽△ABC(两角分别相等的两个三角形相似). ∴=. ∴BC= = =14. 五、学生练习 1. 讨论教材随堂练习第1题 有一个锐角相等的两个直角三角形是否相似?为什么? 2.自己独立完成教材随堂练习第2题 六、小结 本节主要学习了相似三角形的定义及相似三角形的判定定理1,一定要掌握好这个定理. 4.2探索三角形相似的条件(2) 教学目的 使学生掌握三角形相似的判定定理2,3,和它们的应用. 教学重点 判定定理2和3 教学难点 判定定理的应用 教学过程 一、 复习: 1.判定三角形相似目前有哪些方法? 2.回忆三角形相似判定定理1的证明的方法. 二、 新授 (一)导入新课 三角形全等的判定中AAS 和ASA对应于相似三角形的判定的判定定理1,那么SAS和SSS对应的三角形相似的判定命题是否正确,这就是本节研究的内容.(板书) (二) 做一做 1. (1)画△ABC与△A′B′C′,使∠A=∠A′,和都等于给定的值k.设法比较 ∠B与∠B′的大小(或∠C与∠C′的大小)、△ABC与△A′B′C′相似吗? (2)改变k值的大小,再试一试. 判定定理2:两边成比例且夹角相等的两个三角形相似. 2. 画△ABC与△A′B′C′,使、和都等于给定的值k. (1)设法比较∠A与∠A′的大小; (2)△ABC与△A′B′C′相似吗?说说你的理由. 改变k值的大小,再试一试. 判定定理3:三边:成比例的两个三角形相似. (三)例题学习 例1:如图,D,E分别是△ABC的边AC,AB上的点,AE=1.5,AC=2,BC=3,且=,求DE的长. 解:∵AE=1.5, AC=2,∴=, ∵=,∴=. 又∵∠EAD=∠CAB, ∴△ADE∽△ABC(两边成比例且夹角相等的两个三角形相似). ∴==. ∵BC=3,∴DE= BC=×3=. 例2:如图,在△ABC和△ADE中,== ,∠BAD=20°,求∠CAE的度数. 解:∵== , ∴△ABC∽△ADE(三边成比例的两个三角形相似). ∴∠BAC=∠DAE, ∴∠BAC-∠DAC =∠DAE-∠DAC, 即∠BAD=∠CAE. ∵∠BAD=20°, ∴∠CAE=20°. 三、巩固练习 四、小结 本节学习了相似三角形两个判定定理,一定用时要注意它们使用的条件. 4.4.3 探索三角形相似的条件——黄金分割 教学目标 (一)教学知识点 1.知道黄金分割的定义. 2.会找一条线段的黄金分割点. 3.会判断某一点是否为一条线段的黄金分割点. (二)能力训练要求 通过找一条线段的黄金分割点,培养学生的理解与动手能力. (三)情感与价值观要求 理解黄金分割的意义,并能动手找到和制作黄金分割点和图形,让学生认识数学与人类生活的密切联系对人类历史发展的作用. 教学重点 了解黄金分割的意义,并能运用. 教学难点 找黄金分割点和画黄金矩形. 教学方法 讲解法 教具准备 投影片一张 教学过程 Ⅰ.创设问题情境,引入新课 [师]生活中我们见到过许许多多的图形,形态各异,美观大方.那么这些漂亮的图形你能画出来吗?比如,右图是一个五角星图案,如何找点C把AB分成两段AC和BC,使得画出的图形匀称美观呢?本节课就研究这个问题. Ⅱ.讲授新课 [师]在五角星图案中,大家用刻度尺分别度量线段AC、BC的长度,然后计算、,它们的值相等吗? [生]相等. [师]所以. 1.黄金分割的定义 一般地,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割(golden section),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.其中≈0.618. 2. 计算黄金比. 解:由= ,得∴AC2=AB·BC. 设AB=1,AC=x,则BC=1- x. ∴x2=1×(1-x) ∴x2+ x -1=0 解这个方程,得 x1=或x2=(不合题意,舍去), 所以,黄金比=≈0.618。 3.作一条线段的黄金分割点. 如图,已知线段AB,按照如下方法作图: (1)经过点B作BD⊥AB,使BD=AB. (2)连接DA,在DA上截取DE=DB. (3)在AB上截取AC=AE.则点C为线段AB的黄金分割点. [师]你知道为什么吗? 若点C为线段AB的黄金分割点,则点C分线段AB所成的两条线段AC、BC间须满足.下面请大家进行验证.自己有困难时可以互相交流.为了计算方便,可设AB=1. 证明:∵AB=1,AC=x,BD=AB= ∴AD=x+ 在Rt△ABD中,由勾股定理,得(x+)2=12+()2 ∴x2+x+=1+ ∴x2=1-x ∴x2=1·(1-x) ∴AC2=AB·BC 即 即点C是线段AB的一个黄金分割点, 由x2=1-x整理,得x2+x-1=0 ∴x= ∵AC为线段长,只能取正,∴AC=≈0.618 ∴≈0.618,∴黄金比约为0.618. 3.想一想 古希腊时期的巴台农神庙(Parthenom Temple).把它的正面放在一个矩形ABCD中,以矩形ABCD的宽AD为边在其内部作正方形AEFD,那么我们可以惊奇地发现,,点E是AB的黄金分割点吗?矩形ABCD的宽与长的比是黄金比吗? [师]请大家互相交流. [生]因为四边形AEFD是正方形,所以AD=BC=AE,又因为,所以,即,因此点E是AB的黄金分割点,矩形ABCD宽与长的比是黄金比. [师]在上面这个矩形中,宽与长的比是黄金比,这个矩形叫做黄金矩形.你学会作了吗? Ⅲ.课时小结 本节课学习了:1.黄金分割点的定义及黄金比. 2.如何找一条线段的黄金分割点,以及会画黄金矩形. 3.能根据定义判断某一点是否为一条线段的黄金分割点. Ⅳ.课后作业 Ⅴ.活动与探究 要配制一种新农药,需要兑水稀释,兑多少才好呢?太浓太稀都不行.什么比例最合适,要通过试验来确定.如果知道稀释的倍数在1000和2000之间,那么,可以把1000和2000看作线段的两个端点,选择AB的黄金分割点C作为第一个试验点,C点的数值可以算是1000+(2000-1000)×0.618=1618.试验的结果,如果按1618倍,水兑得过多,稀释效果不理想,可以进行第二次试验.这次的试验点应该选AC的黄金分割点D,D的位置是1000+(1618-1000)×0.618,约等于1382,如果D点还不理想,可以按黄金分割的方法继续试验下去.如果太浓,可以选DC之间的黄金分割点;如果太稀,可以选AD之间的黄金分割点,用这样的方法,可以较快地找到合适的浓度数据. 这种方法叫做“黄金分割法”.用这样的方法进行科学试验,可以用最少的试验次数找到最佳的数据,既节省了时间,也节约了原材料. 板书设计 §4.4.3探索三角形相似的条件—— 黄金分割 一、1.黄金分割的定义. 2.作一条线段的黄金分割点及黄金矩形. 3.想一想 二、课时小节 三、课后作业- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级数学上册 第四章 图形的相似 4.4 探索三角形相似的条件教案 新版北师大版-新版北师大版初中九年级上册数学教案 九年级 数学 上册 第四 图形 相似 探索 三角 形相 似的 条件 教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:九年级数学上册 第四章 图形的相似 4.4 探索三角形相似的条件教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc
链接地址:https://www.zixin.com.cn/doc/7612171.html
链接地址:https://www.zixin.com.cn/doc/7612171.html