江苏省苏州市第二十六中学八年级数学上册《三角形中位线》教案 苏科版.doc
《江苏省苏州市第二十六中学八年级数学上册《三角形中位线》教案 苏科版.doc》由会员分享,可在线阅读,更多相关《江苏省苏州市第二十六中学八年级数学上册《三角形中位线》教案 苏科版.doc(5页珍藏版)》请在咨信网上搜索。
教学课题:§3.6.1三角形中位线 教学时间(日期、课时): 教材分析: 学情分析: 教学目标: 1.掌握中位线的概念和三角形中位线定理; 2.能够应用三角形中位线概念及定理进行有关论证和计算,进一步提高学生的计算能力; 3.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力; 4.通过一题多解,培养学生对数学的兴趣。 教学准备 《数学学与练》 集体备课意见和主要参考资料 页边批注 教学过程 一. 新课导入 课本以引导学生回忆探索三角形中位线与第三边的位置关系和数量关系的过程{将一张三角形纸片剪成两部分,使分成的两部分合成一个平行四边形}为情景。 二. 新课讲授 1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线. 2.三角形中位线性质 三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半. 应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明. (l)延长DE到F,使 ,连结CF,由 可得AD FC. (2)延长DE到F,使 ,利用对角线互相平分的四边形是平行四边形,可得AD FC. (3)过点C作 ,与DE延长线交于F,通过证 可得AD FC. 上面通过三种不同方法得出AD FC,再由 得BD FC,所以四边形DBCF是平行四边形,DF BC,又因DE ,所以DE . 例 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形. 已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点. 求证:四边形EFGH是平行四边形.‘ 分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形. 练习: 1、 如图;三角形三条中位线组成的图形与原三角形 有怎样的大小关系(面积和周长)? 说说你的理由。 已知:三角形三边长分别为6,8,10,则由它的三条中位线 构成的三角形的面积为 ( ),周长为( ) 。 2、 已知:在四边形ABCD中,AB=CD,E、F、G 分别是BD、AC、BC的中点。 求证:⊿EFG是等腰三角形。 3、在⊿ABC中,∠BAC=900,延长BA到点D,使AD=1/2AB,E、F分别是BC、AC的中点。 (1)求证:DF=BE (2)过点A作AG//BC,与DF相交于点G, 求证AG=DG 4、巩固练习 课本P32 T1.2 三. 小结 1.三角形中位线及三角形中位线与三角形中线的区别. 2.三角形中位线定理及证明思路. 板书设计 作业设计 已知:AD是⊿ ABC的中线,E是AD的中点.求证: FC=2AF 已知:在四边形ABCD中,对角线AC,BD交于点O, E,F分别是AB, CD的中点,且AC=BD, 求证: OM = ON 教学反思 页边批注- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形中位线 江苏省苏州市第二十六中学八年级数学上册三角形中位线教案 苏科版 江苏省 苏州市 第二 十六 中学 八年 级数 上册 三角形 中位线 教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文