九年级数学上册 26.1概率的预测教案 华东师大版.doc
《九年级数学上册 26.1概率的预测教案 华东师大版.doc》由会员分享,可在线阅读,更多相关《九年级数学上册 26.1概率的预测教案 华东师大版.doc(16页珍藏版)》请在咨信网上搜索。
§26.1 概率的预测 第一课时 什么是概率(一) 教学内容 本节课主要学习概率的定义和通过列表法解决理论概率问题,从实验中寻找规律 教学目标 1、知识与技能 通过实验,理解事件发生的可能性问题,感受理论概率的意义 2、过程与方法 经历实验等活动过程,学会用列表法估计某一事件发生的概率 3、情感、态度与价值观 发展学生合作交流的意识和能力 重难点、关键 重点:运用列表法计算简单事件发生的概率 难点:对概率的理解 关键:在实验中寻找规律 教学准备 教师准备:骰子、扑克牌、硬币 学生准备:骰子、扑克牌、硬币 教学过程 一、 合作实验,寻找规律 1、实验感知 教师活动:拿出一枚硬币抛掷,提出:结果有几种情况? 学生活动:拿出一枚硬币抛掷发现结果只有两种情况:“出现正面”和“出现反面”,而且发生的可能性均等 教师引入:表示一个事件发生的可能性大小的这个数,叫做该事件的概率 学生联想:抛掷一枚硬币出现正面的概率是,出现反面的概率是 教师引导:可记作P(出现正面)=,P(出现反面)= 2、 问题提出 投掷一枚普通的六面体骰子,“出现数字为5”的概率为多少? 学生回答:,可记作P(出现数字5)= 教师讲述:上述例子可以经过分析很快地得出概率,但是实际中,许多问题是要进行重复实验、观察频率值的办法来解决的,请看下面一个例子:见课本P108表26.1.1 学生活动:对表26.1.1中的问题进行实验 思路点拨:(1)关注的是发生哪个或哪些结果;(2)注意所有机会均等。(1)、(2)这两种结果个数的比就是所关注的结果发生的概率 教师活动:引导学生在实验中寻找方法。 二、 范例学习,应用所学 1、问题情境1:图26.1-1是一个可以自由转动的转盘,转动转盘,当转盘停止转动时,指针落在什么颜色区域的概率大? 2、师生交流:教师动手操作,在实验中发现红色区域的面积最大,因此,当转盘停止转动时,指针落在红色区域的概率大,P(红色区域)=。 三、 问题情境2:课本P109问题1 学生活动:分四人小组展开对“问题1”的实验,并从中得到规律;如果掷的次数很多,实验的频率渐趋稳定,平均每6次就有1次掷出“6” 评析:通过实验,让学生逐步计算一个随机事件发生的实验频率,并观察其中的规律性,从而归纳出实验概率趋于理论概率这一规律。 四、 问题情境3:课本P110思考 师生活动:在教师的引导下,理解“思考”中的问题,提出自己的观点 思路点拨:只要是均匀的骰子,掷得任何一面(1~5)的概率都是一样的,这个概率表示“均等”。也就是掷骰子,六个面出现的概率是均等的,对于第二个问题的提出,结论是不矛盾的,因为实验频率是趋于理论频率的,实验往往是估计值,是一个趋向。 评析:一个人的实验数据相差可能较大,但是随着实验次数的增大,实验频率也就比较稳定了。 例:见课本P111例1 思路点拨:本题是简单的古典概率,理论上很容易求出其概率。P(抽到男同学名字)==;P(抽到女同学名字)=,得出结论为抽到男同学名字的概率大 教师活动:讲述例题,让学生感受到古典概率的内涵以及计算方式 学生活动:参与到例题的学习中去,体会概率的意义 拓展延伸:课本P111“思考” 师生交流:分四人小组进行讨论,然后再在全班进行发言 教学形式:互动交流 五、 随堂练习,巩固深化 1、课本P111练习 2、探研时空 袋中有6个红球,4个白球,2个黄球和1个蓝球,这些球除了颜色外完全相同,小红认为袋中共有四种不同颜色的球,所以从袋中任意摸出一个球,摸到红球、白球、黄球的概率一样大,你认为呢? 思路点拨:小红的看法是不正确的,因为四种颜色的球的只数十不尽相同的,因此,摸到它们的概率也不一样。 六、课堂总结,提高认识 教师提问: 1、什么叫概率? 2、本节中的实验结果所产生的趋势与理论概率之间有什么关系? 3、实验次数的大小与所得的“估计值”有什么关系? 4、谈谈你对概率的理解和体会 七、布置作业,专题突破 1、课本P116习题26.1第1、2题 2、选用课时作业优化设计 八、课后反思(略) 第一课时作业优化设计 1、任意投掷均匀的骰子,4朝上的概率是_______ 2、袋中装有6个红球和7个白球,且除颜色外,这些球都相同,从袋中任意摸出红球的概率是_______ 3、某彩票中奖率是2%,买2张一定不会中奖,买1000张一定会中奖,这种说法是否正确?答______ 4、一副扑克牌(去掉大王和小王),随机抽取一张,抽到红桃的概率是______ 5、下列说法正确的是( ) A.小李喝了冰水才感冒的 B.投掷一枚均匀的骰子,每个点数出现的频率相同 C.转盘A大,转盘B大,颜色和图案都一样的情况下,用转盘A实验成功的概率大 D.明天一定会下雨 6.如图26.1-2,有一个被等分为8个角形的转盘,转动转盘,指针落在白色区域的概率是( ) A.1 B. C. D. 7.袋子里有1个红球,3个白球,5个黄球,每个球除颜色外都相同,从中任意摸1个球: ⑴摸到红球的概率是多少? ⑵摸到白球的概率是多少? ⑶摸到黄球的概率是多少? ⑷哪一个概率大? 第二课时 什么是概率(二) 教学内容 本节课继续上一节的内容,学习概率的应用 教学目标 1. 知识与技能 通过第一课时问题的变式推广,掌握并运用列表法计算简单事件发生的概率 2. 过程与方法 经历实验、统计等活动过程,在活动中进一步发展学生的合作交流意识,学会求简单事件的概率的方法 3. 情感、态度与价值观 培养应用概率解决问题的能力,感受其实际价值 重难点、关键 1. 重点:掌握列表法、树状图来计算简单事件的概率的方法 2. 难点:理解概率的内涵 3. 关键:运用实验的方法获取数据,列成表格或树状图,直观地求出事件的概率 教学准备 1. 教师准备:投影仪、扑克牌 2. 学生准备:扑克牌、两个转盘 教学过程 一. 创设情境,感知轻重 1. 问题牵引 有两组牌是相同的,如果每组3张牌,它们牌面数字分别是1,2,3,那么从每组中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少? 思路点拨:方法一是采用树状图来解决;方法二是借助列表,因为两次出现1,2,3点的可能性相同,因而共有9种可能,而符合条件的有(1,3)、(2,2)、(3,1)三种可能,所以牌面数字和为4的概率等于即 教师活动:提出问题,适时引导 学生活动:四组合作,尝试求解这个问题 教学方法:实验、交流、探索 评析:安排此问题的目的在于引导学生对所研究的问题,所用的方法进行反思和拓展,用列表法求概率时应注意各种情况出现的可能性务必相同 2. 拓展 对上述问题的结论改为: ⑴求两张牌的牌面数字和为奇数的概率 ⑵求两张牌的牌面数字和大于3的概率 ⑶求两张牌的牌面数字和为3的概率 二. 范例学习,应用所学 1. 例1:见课本P112例2 思路点拨:这是一个理论概率问题,袋中球的总数为8+16=24只,由于红球有8只,因此,P(取出红球)=,黑球16只,P(取出黑球)=,也可以这样计算黑球:P(取出黑球)=1-P(取出红球)= 2. 例2:见课本P112例3 思路点拨:这是一道通过比较取出黑球的概率大小进行判断的题目,首先要计算从甲、乙两只口袋中取出黑球的概率,(取出黑球)=,(取出黑球)=,所以应选乙袋成功机会大 教师活动:参与分析例2、例3,并讲解求解的方法 学生活动:参与分析例2、例3,从中认识理论概率的运算方法 三. 继续探究,实验牵引 1.课堂演练 用列表法求概率: ⑴将一枚均匀的硬币掷两次,两次都是正面朝上的概率是多少? ⑵游戏者同时转动如下图26.1-3(甲)、(乙)中两个转盘进行“配紫色”游戏,求游戏者获胜的概率 教师活动:提出问题,引导学生掌握列表求解概率的具体步骤 学生活动:书面练习,同桌交流(拿出制作的学具,如上图26.1-3(甲)、(乙)) 2. 思路点拨 ⑴掷两次硬币,两次都是正面朝上的概率是,所列表格可以是: ⑵游戏者获胜的概率等于,所列表格可以是: 四. 随堂练习,巩固深化 1. 课本P113练习 2. 探研时空 随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率是多少? 思路点拨:运用树状图分析如下: 总共有4种结果,每种结果出现的可能性相同,而至少有一次正面朝上的结果有3次:(正,正)、(正,反)、(反,正),所以至少有一次正面朝上的概率是,本题也可用列表法 五. 课堂总结,提高认识 本节课主要学习列表法、树状图求概率,在学习中要领会概率与统计之间的内在联系,学会多样思维 六. 布置作业,专题突破 1. 课本P117习题26.1第3题 2. 选用课时作业优化设计 七. 课后反思(略) 第二课时作业优化设计 1. 如图26.1-4,均匀的正四面体的各面依次标有1,2,3,4四个数字,同时抛掷两个这样的四面体,它们着地一面的数字不同的概率你能求得出来吗?与同伴交流 2. 如果有两组同样的牌,每组3张,它们的牌面数字分别是3,4,5,那么从每组牌中各摸出一张牌,两张牌面数字和为几的概率最大?两张牌面数字和等于8的概率是多少? 第三课时 在复杂情况下列举所有机会均等的结果(一) 教学内容 本节课主要学习复杂状态下机会均等的事件结果 教学目标 1. 知识与技能 能利用实验的方法估计一些复杂的随机事件发生的概率 2. 过程与方法 经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力 3. 情感、态度与价值观 体会统计、实验、研讨活动的应用价值,感受概率的内涵 重难点、关键 1. 重点:掌握实验的方法估计一些复杂的随机事件的概率 2. 难点:实验估计随机事件发生的概率 3. 关键:通过实验、统计活动,体会随机事件发生的概率 教学准备 1. 教师准备:投影仪、生日蛋糕 2. 学生准备:预习本节课内容,调查10人的生日,生日蛋糕 教学过程 一. 创设情境,愉快学习 1. 情境思索 教师发言:请同学们找出班上今天生日的学生,为他过个生日。请同学们想一想,400个同学中,一定有2个同学的生日相同(可以不同年)吗?300个同学呢? 学生活动:分四人小组,组织生日活动,为班上过生日的学生唱“生日之歌”,而后思考老师提出的问题 评析:本节课以生日话题切入,具有一定的趣味性,上述问题的理论概率大约等于0.97 思路点拨:首先提问“400个同学中,一定有2个同学的生日相同吗?”这个问题可以利用抽屉原理来解答,答案是肯定的,随后提醒同学思考“300个同学呢?”此时就不可能保证了,在此基础上再提出老师的观点:50个同学中,就 可能有2个同学的生日相同,调动学生的探究意识。 2. 问题思索 ⑴50个同学中,就很有可能有2个同学的生日相同,这话正确吗?请与同伴交流 ⑵如果你们班50个同学中有2个同学的生日相同,那么能说明50个同学中有2个同学生日相同的概率是1吗?如果你们班没有2个同学生日相同,那么能说明其相应概率是0吗? 点评:学生调查本班同学的生日后,可能有2个同学生日相同,也可能没有。对于学生的调查结果应进行适时反思与评判,为此,来加深学生对概率的理解。 思路点拨:50个同学有2个同学的生日相同,并不能说明50个同学中有2个同学生日相同的概率是1;而50个同学中没有2个同学生日相同,也不能说其概率为0. 教师活动:提出问题,组织学生交流,适时引导 学生活动:小组合作探究,而后进行小组汇报 二. 获例学习,应用所学 教师活动:复习列表法与树状图的应用 投影显示课本P113例4 思路点拨:这里投掷硬币的次数为3,第一次可能出现的结果只有两种:正 面和反面;但是第二次投掷的结果有四种:正,反,正,反,即 第三次再投掷,那是在第二次的结果上:。从上到下就有: ,从上到下每一条路径就是一种可能的结果,这里每一种结果发生的机会均等,即P(正正正)=P(正正反)= 教师活动:引导学生画树状图,并请一位学生上台解释自己画的树状图,然后再写出解答。(见课本P114) 学生活动:讨论例4,应用树状图进行分析,进一步理解树状图的分析方法 拓展延伸:课本P114思考 师生活动:教师组织学生进行讨论 三. 联系实际,丰富联想 课堂活动:每个同学课外调查10人的生日写在纸条上,从全班的调查结果中随机选取50个被调查的人,看看他们中有没有2个人的生日相同,将全班同学的调查数据集中起来设计一个方案,估计50人中有2个生日相同的概率 评析:设置本题的目的在于通过具体收集数据、进行实验、统计结果等过程,进一步丰富学生的活动经验,同时对本节问题有较直观的感觉。 思路点拨:在具体实验中,可以将每个同学所调查的生日随机排列成某一适当形式 (如方阵),然后再按照某种规则从中选取50个进行实验,还可以要求学生每次随机地 写下自己所调查的一个生日,再汇总,写生日时,为了节约时间,可以进行一定的简化, 如可将“2月6日”记为“0216”等.在括动与分析的基础上,也可以要求学生随机地写出 l~365之间的某一个自然数代表生日,实际上这就是模拟实验. 四、课堂总结,提高认识 1.要理解尽管随机事件每次发生与否无法确定.但发生的可能性是可以估计的,体 会不确定中隐含着确定的因素,同学要学会解决生活中常见的概率问题. 2.常见的方法:(1)列表;(2)画树状图. 五、布置作业,专题突破 六、课后反思(略) 第三课时作业优化设计 1.甲、乙两人合伙的生意,赚得100元的利润,双方约定用博彩的方法决定利润的 归属.于是甲从口袋里摸出两枚硬币,对乙说,你投下去,若有两个正面朝上利润归你; 若一正一反朝上利润归我;若两个反面朝上利润各分一半.那么这种博彩方法公平吗? 若不公平,对谁更有利?为什么? 2.甲、乙两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相 同),但是他们不知道这些车的舒适度,也不知道汽车开过来的顺序,两人采用了不同的 乘车方案.甲无论如何总是上开来的第一辆车;而乙则是先观察,后上车,当第一辆车开 来时,他不上车,而是仔细观察车的舒适状态,如果第二辆车的状况比第一辆好,他就上 第二辆车;如果第二辆车不比第一辆好,他就上第三辆车;如果把这三辆车的舒适程度 分为上、中、下三等,请你尝试解决下列问题: (1)三辆车按出现的先后顺序共有哪几种不同的可能? (2)你认为甲、乙两人采用的方案,哪一种方案使自己乘坐上等车的可能性大?为什么? 第四课时在复杂情况下列举 所有机会均等的结果(二) 教学内容 本节课继续学习复杂情况下机会均等的事件结果问题、 教学目标 1.知识与技能. 能利用实验的方法估计一些复杂的随机事件发生的概率;形成对某一事件发生的概率的较为全面的理解. ‘ 2.过程与方法. 经历实验、统计等活动的过程,在活动中进一步发展学生合作交流的意识和能力.初步形成随机观念. 3.情感、态度与价值观. 发展学生初步的辨证思维能力,感受概率的应用价值. 重难点、关键 1.重点:学会,应用实验的方法估计随机事件的概率. 2.难点:理解概率的内涵;对模拟实验的了解. 3.关键:概率的实验估算、理论计算以及频率的偏差等应是理解概率的一个关键. 教学准备 l.准备:投影仪、12生肖邮票制戒投影片、编球号l~12号、布口袋、计算器. 2.学生准备:计算器. 教学过程 一、问题牵引,小组交流 1.思考:课本P114问题2. 教师活动:组织学生分成四人小组,讨论“问题2”. 教具配合:用球和布袋为教具,辅助学生进行直观认识. 学生活动:动手操作,感知问题的内涵.部分学生在黑板上画出实验思想,用树状图表示 2.辨析理解:课本Pll5思考. 评析:让学生通过比较,能真正领会“问题2”的本质特征. 3.继续探究:课本P115问题3. 师生活动:教师引导学生应用列表法,解决“问题3”. 评析:上述两个问题主要是巩固画树状图法和列表法解决概率问题. 二、合作探究,方案设计 1.问题提出:通过调查,我们估计了6个人中有2个人生肖根同的概率.要想使这种估计尽可能精确.就需要尽可能多地增加调查对象,而这样做即费时又费力.请同学们想一想,能不能不用调查即可估计出这一概率呢?请你设计出具体的实验方案. 教师活动:操作投影仪,提出问题.巡视、关注小姐学生的设计方案,适时引导. 学生活动;分四人小组探究问题的结论,设计解决问题的实验方案,而后小组汇报各自的方案. 媒体使用:投影显示问题情境,合作探究,师生互动. 评析:教学中,教师先提出问题,组织学生分小组进行充分的交流.引导学生思考具体方案.学生的方案多种多样,只要合理就可以肯定和鼓励.教师在提出问题前,通过投影仪显示12生肖图片等,激发学生的兴趣. 2.参考答案: (1)用扑克牌,从扑克牌中选出梅花色12张,分别为1~10,J(11)Q(12).每个生肖都对应着一张扑克牌 (2)用12枚一元钱的钱币,一面贴上1~12号,每个生肖都对应着一枚钱币. 3.阅读比较: 有人说,可以用12个编有号码的、大小相同的球代替12种不同的生肖,这种每个人的生肖都对应着一个球,6个人中有2个人生肖相同,就意味着6个球中有2个球的号码相同,因此,可在口袋中放人这样的12个球,从中摸了1个球,记下它的号码,放回去,再从中摸出1个球,记下它的号码,放回去;……,直至摸出1个球,记下第6个号码,为一次实验,重复多次实验,即可估计6个人中有2个人生肖相同的概率. 想一想:(1)你认为这样说法有道理吗? (2)为什么每次摸出球后都要放回去? 概念:上面的方法是用摸球实验代替实际调查,类似这样的实验为模拟实验. 教师活动:指导阅读,可以采用实物演示,帮助理解. 学生活动:与自己设计的方案进行比较,从中比较其合理性. 三、随堂练习.巩固深化 1.课本P116练习第1、2题. 2.探研时空. 探索:(1)从去掉大小王牌的一副扑克牌中随意抽出一张,抽到黑桃偶数(Q为偶数)的概率是多少? (2)设计一种摸球游戏,使摸到黄球的概率与(1)中的概率相同,最少要用多少个球?其中要用多少个黄球?说说你的设计理由. 四、课堂总结.提高认识 1.学习本节课内容,结合具体_情况,请你谈一谈它们的实际意义. 2.本节小组交流,你在哪些能力上有提高?你舶同伴中哪些人表现出良好的观察和分析能力. 五、布置作业,专题突破 1.课本P117第6、7题. 2.选用课时作业优化设计. 六、课后反思(略) 第四课时作业优化设计 1.小芳随意买了一张足球赛门票,座号是2的倍数和座号是9的倍数的概率哪个大?答:_______________ 2.一个转盘中,红色占,黑色占,白色占,转动转盘,转盘停止后,指针落在________区域的概率最大. 3.数字11444114411111444411144444中,1和4出现的频数分别_________ 4.小明和小颖按如下规则的游戏:桌上有5支铅笔,每次取出1支或2支,由小明先取,最后取完铅笔者获胜.如果小明获胜的概率为1,那么小明第一次应取走_______支. 5.一个均匀的立方体的六个面上,分别标有数1、2、3、4、5、6.图26.1—5,是这个立方体表面积的展开图.抛掷这个立方体,则朝上一面的数恰好等于朝下一面上的数的 的概率是__________ 6.一副扑克牌(去掉大王、小王)任意抽取其中一张,抽到黑球的概率是 ( ) A.1 B. c. D.以上结论都不对 7.口袋里有相同的6个红球、4个白球和2个黑球,从口袋里摸出了2个球.若两个 都是红色,则甲胜;若两个都是黑色球,则乙胜.请你猜一猜,谁获胜的概率大? ( ) A.甲大 B.乙大 C.甲、乙一样大 D.无法判定 8.盒中有红球、白球、黑球各1粒,从盒中第一次取1粒然后放回盒中,每二次再取 1粒然后再放回盒中,则这个实验可能出现的情况有 ( ) A.9种 B. 6种 c.3种 D.以上结论都不对 9.一只小鸟飞翔在空中,然后随意落在图26.1—6所示的某个格子中(每个格子除颜色外完全相同),则小鸟落在白色格子中的机会是 ( ) A. B. c. D. lO.有五粒完全相同的白球,它们上面分别标有4,5,5,5,6,6,7,7.每粒球只标一个数,现将它们放人不透明的布袋中,小明从中任意摸出一粒球. (1)摸出标有5与6的球的概率相同吗?为什么? (2)摸到标有奇数的球的概率大还是摸到标有偶数的球的概率大?- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级数学上册 26.1概率的预测教案 华东师大版 九年级 数学 上册 26.1 概率 预测 教案 华东师大
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文